

Malware memory analysis for non-
specialists
Investigating publicly available memory images for Prolaco and
SpyEye

R. Carbone
Certified Forensic Hacking Investigator (EC-Council)
Certified Incident Handler (SANS)
DRDC Valcartier

Defence Research and Development Canada – Valcartier
Technical Memorandum
DRDC Valcartier TM 2013-155
October 2013

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

Abstract ……..

This technical memorandum examines how an investigator can analyse an infected Windows
memory dump. The author investigates how to carry out such an analysis using Volatility and
other investigative tools, including data carving utilities and anti-virus scanners. Volatility is a
popular and evolving open source-based memory analysis framework upon which the author has
proposed a memory-specific methodology for aiding fellow novice memory analysts. The author
examines how Volatility can be used to find evidence and indicators of infection. This technical
memorandum is the second in a series concerning Windows malware-based memory analysis.
This current work examines two memory images infected with Prolaco and SpyEye, respectively.

Résumé ….....

Ce mémorandum technique examine comment un investigateur peut analyser une image mémoire
d’une machine Windows infectée. L’auteur investigue les techniques d’analyse utilisant Volatility
et d’autres outils tels que les utilitaires de récupération de données et les scanneurs anti-virus.
Volatility est un cadre populaire d’analyse de mémoire en source libre sur lequel l’auteur s’appuie
pour proposer une méthodologie spécifique à la mémoire pour aider ses collègues analystes
novices. L’auteur examine comment Volatility peut être utilisé pour trouver des preuves et des
indicateurs d’infection. Ce mémorandum technique est le deuxième d’une série visant la
découverte de maliciel par le biais d’une analyse de la mémoire. Le présent travail examine deux
images mémoires infectées, respectivement, par Prolaco et SpyEye.

DRDC Valcartier TM 2013-155 i

This page intentionally left blank.

ii DRDC Valcartier TM 2013-155

Executive summary

Malware memory analysis for non-specialists: Investigating
publicly available memory images for Prolaco and SpyEye

Carbone, R.; DRDC Valcartier TM 2013-155; Defence Research and
Development Canada – Valcartier; October 2013.

While memory analysis has largely been carried out by software reverse engineers and malware
analysts, the advent of memory analysis-based forensic frameworks such as Volatility, has made
it possible for non-memory specialists to engage in the forensic analysis of malware-infected
memory images. By combining Volatility, data carving utilities and anti-virus scanners, novice
analysts have all the necessary tools required for conducting memory-based investigations.

The author’s primary objective is to demonstrate through tutorials how investigators can conduct
meaningful memory-based investigations on their own.

This technical memorandum examines two memory images; the first infected with Prolaco and
the second with SpyEye, in order to build a compendium of tutorials that can be used by the
Canadian Armed Forces and our partners as a basis for conducting their own investigations. This
work is the second in a series that examines various Windows-based malware infected memory
images. The first report in this series, TM 2013-018, examined the Zeus Trojan horse. It is hoped
that these documents will serve as a learning guide.

Although others have engaged in the analysis of some of these publicly available memory images,
the author is of the opinion that these analyses are insufficient for use as a learning guide.
Specifically, these analyses are either too limited in their investigative scope or report too little
information to be of much use to budding memory analysts. Moreover, many of the analyses
leave the reader asking more questions than when he began, due to their overall lack of a
comprehensive investigative context. Thus, the author has strived to ensure that his investigative
actions and lines of inquiry were well documented, even if some portions of a given investigation
were unsuccessful, in order to ensure that the investigative context used was coherent.

This work was carried out over a period of several months as part of the Live Computer Forensics
project, an agreement between DRDC Valcartier and the RCMP (SRE-09-015, 31XF20).

The results of this project will also be of great interest to the Canadian Forces Network
Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the
Sûreté du Québec and other cyber investigation teams.

DRDC Valcartier TM 2013-155 iii

Sommaire

Malware memory analysis for non-specialists: Investigating
publicly available memory images for Prolaco and SpyEye

Carbone, R. ; DRDC Valcartier TM 2013-155 ; Recherche et développement
pour la défense Canada – Valcartier; octobre 2013.

Bien que l’analyse de la mémoire ait été principalement effectuée jusqu’à présent par les rétro-
ingénieurs logiciels et les analystes de maliciel, les avancées des cadres d’analyse de la mémoire,
tel que Volatility, permettent maintenant aux non-spécialistes de la mémoire d’effectuer des
analyses d’image mémoire de machines infectées par des maliciels. En combinant Volatility, les
outils de récupération de données et les scanneurs anti-virus, les analystes novices possèdent tous
les outils requis pour investiguer une image mémoire.

L’objectif premier de l’auteur est de démontrer, par le biais d’un tutoriel, comment un
investigateur peut réaliser une analyse de la mémoire par lui-même.

Ce mémorandum technique examine deux images mémoires infectées par Prolaco et SpyEye,
deux maliciels connus, pour monter un ensemble de tutoriels qui pourront être utilisés par les
Forces Armées canadiennes et nos partenaires pour faire leurs propres investigations. Ce travail
est le deuxième d’une série visant la découverte de maliciel par le biais d’une analyse de la
mémoire d’une machine Windows infectée. Le premier rapport de cette série, TM 2013-018,
examinait le cheval de Troie Zeus. Nous espérons que ces documents serviront de guide
d’apprentissage.

Bien que d’autres aient mentionné avoir effectué l’analyse de ces images mémoires publiques,
l’auteur croit que ces analyses ne sont pas assez détaillées pour servir de guide d’apprentissage.
Spécifiquement, ces analyses sont soit trop limitées dans ce qu’elle investigue ou ne donnent pas
assez de détails pour être complètement utiles. De plus, plusieurs de ces analyses font que le
lecteur a, en bout de ligne, plus de questions que de réponses étant donné le peu de détails
approfondis sur le contexte de l’investigation. L’auteur a donc déployé tous les efforts pour
s’assurer que toutes les actions et les champs d’enquête sont bien documentés et cohérents dans le
contexte, même si certains essais étaient infructueux.

Ce travail fut réalisé sur une période de plusieurs mois dans le cadre du projet "Live Computer
Forensics" qui est une entente entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20).

Les résultats de ce projet seront également d'un grand intérêt pour le Centre d'opérations des
réseaux des Forces canadiennes (CORFC), le Groupe intégré de la criminalité technologique
(GICT) de la GRC, la Sûreté du Québec, ainsi que d’autres équipes d'enquêtes cybernétiques.

iv DRDC Valcartier TM 2013-155

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire iv
Table of contents ... v
List of tables ... ix
Acknowledgements .. xi
Disclaimer policy... xii
Requirements, assumptions and exclusions .. xiii
Target audience .. xiv
1 Background ... 1

1.1 Objective.. 1
1.2 Why write new tutorials? ... 1
1.3 Infected memory image information ... 1
1.4 Data carving... 1
1.5 Malware and anti-virus scanners ... 2

1.5.1 Specifics ... 2
1.5.2 Caveat .. 2

1.6 Detailed list of software tools used .. 2
1.6.1 Anti-virus scanners .. 2
1.6.2 Data carving ... 2
1.6.3 Volatility .. 3

1.7 Investigative methodology .. 3
2 Memory investigation and analysis of Prolaco ... 4

2.1 Background.. 4
2.2 Preliminary investigative steps .. 4

2.2.1 Safeguard the memory image .. 4
2.2.2 Preliminary anti-virus scanning results .. 4
2.2.3 Data carving and file hashing .. 4
2.2.4 Anti-virus scanning and file hashing results for carved data files 5

2.3 Volatility analysis .. 5
2.3.1 Step 1: Determine background information ... 5

2.3.1.1 Imageinfo plugin .. 6
2.3.1.2 Pslist plugin .. 6
2.3.1.3 Psscan plugin ... 7
2.3.1.4 Differentiating the output between the pslist and psscan plugins 8
2.3.1.5 Psxview plugin ... 9

DRDC Valcartier TM 2013-155 v

2.3.1.6 Correlating PIDs and PPIDs .. 10
2.3.2 Step 2: Assess other sources of evidence ... 11

2.3.2.1 Cmdscan and consoles plugins .. 11
2.3.2.2 Connscan plugin... 11
2.3.2.3 Connections plugin .. 12
2.3.2.4 Sockets and sockscan plugins .. 12
2.3.2.5 Filescan plugin ... 13
2.3.2.6 Mutantscan plugin .. 14
2.3.2.7 Handles plugin ... 14
2.3.2.8 Threads plugin ... 15

2.3.3 Step 3: Dump and assess suspicious process ... 15
2.3.3.1 Create data directories .. 15
2.3.3.2 Malfind plugin ... 16
2.3.3.3 Memdump plugin ... 17
2.3.3.4 Procexedump plugin .. 17
2.3.3.5 Procmemdump plugin .. 18
2.3.3.6 Virus scanning and hash verification of dumped processes 19

2.3.4 Step 4: Examining the registry... 20
2.3.4.1 Hivelist plugin .. 20
2.3.4.2 Printkey plugin ... 21
2.3.4.3 Userassist plugin .. 21

2.3.5 Step 5: Strings analysis .. 22
2.3.5.1 Extraction against plugin-based dumped files ... 22
2.3.5.2 Extraction against memory image.. 23

2.4 Summary.. 27
3 Memory investigation and analysis of SpyEye ... 28

3.1 Background.. 28
3.2 Preliminary investigative steps .. 28

3.2.1 Safeguard the memory image .. 28
3.2.2 Preliminary anti-virus scanning results .. 28
3.2.3 Data carving and file hashing .. 28
3.2.4 Anti-virus scanning and file hashing results for carved data files 29

3.3 Volatility analysis .. 30
3.3.1 Step 1: Determine background information ... 30

3.3.1.1 Imageinfo plugin .. 30
3.3.1.2 Pslist plugin .. 30
3.3.1.3 Psscan plugin ... 32
3.3.1.4 Differentiating the output between the pslist and psscan plugins 33
3.3.1.5 Psxview plugin ... 33
3.3.1.6 Correlating PIDs and PPIDs*** .. 35

3.3.2 Step 2: Assess other sources of evidence ... 35

vi DRDC Valcartier TM 2013-155

3.3.2.1 Cmdscan and consoles plugins .. 35
3.3.2.2 Connscan plugin... 36
3.3.2.3 Connections plugin .. 36
3.3.2.4 Sockets and sockscan plugins .. 36
3.3.2.5 Filescan plugin ... 38
3.3.2.6 Mutantscan plugin .. 39
3.3.2.7 Handles plugin ... 39
3.3.2.8 Threads plugin ... 40

3.3.3 Step 3: Dump and assess suspicious processes .. 41
3.3.3.1 Create data directories .. 41
3.3.3.2 Malfind plugin ... 41
3.3.3.3 Memdump plugin ... 47
3.3.3.4 Procexedump plugin .. 49
3.3.3.5 Procmemdump plugin .. 50

3.3.4 Step 4: Examining the registry... 52
3.3.4.1 Hivelist plugin .. 52
3.3.4.2 Printkey plugin ... 53
3.3.4.3 Userassist plugin .. 53

3.3.5 Step 5: Strings analysis .. 53
3.3.5.1 Extraction against plugin-based dumped files ... 54
3.3.5.2 Extraction against memory image.. 57

4 Conclusion .. 60
References 61

 Anti-virus scanner logs for carved data files ... 65 Annex A
A.1 Prolaco ... 65

A.1.1 Avast .. 65
A.1.2 AVG ... 65
A.1.3 BitDefender.. 65
A.1.4 ClamAV ... 65
A.1.5 F-Prot ... 67
A.1.6 McAfee .. 67

A.2 SpyEye ... 68
A.2.1 Avast .. 68
A.2.2 AVG ... 68
A.2.3 BitDefender.. 68
A.2.4 ClamAV ... 69
A.2.5 F-Prot ... 71
A.2.6 McAfee .. 71
 Volatility Windows-based plugins .. 73 Annex B
 NSRL file hash matches for carved data files ... 77 Annex C

C.1 Prolaco ... 77

DRDC Valcartier TM 2013-155 vii

C.2 SpyEye ... 77
 Commonly used registry keys in a typical malware infection 79 Annex D

D.1 Recommended registry keys for use with Volatility ... 79
D.2 Printkey-based script ... 81
D.3 Root Registry Keys .. 81

 Fuzzy hashes for Malfind plugin dumped processes ... 83 Annex E
Bibliography .. 97
List of symbols/abbreviations/acronyms/initialisms ... 98
Glossary 100

viii DRDC Valcartier TM 2013-155

List of tables

Table 1: Infected memory image metadata. .. 1

Table 2: List of anti-virus scanners and their command line parameters. 2

Table 3: Matching of potentially infected carved data file vs. scanner (Prolaco) 5

Table 4: Volatility output for the Pslist plugin sorted by PID (Prolaco). .. 6

Table 5: Volatility output for the Psscan plugin sorted by PID (Prolaco) 8

Table 6: Volatility output for the Psxview plugin sorted by PID (Prolaco). 9

Table 7: Process instantiation for suspicious processes (Prolaco). .. 10

Table 8: Volatility output for the Connscan plugin (Prolaco). .. 11

Table 9: Volatility Sockets and Sockscan plugin output sorted by PID (Prolaco). 12

Table 10: Metadata for PID 1336 dumped using the Memdump plugin (Prolaco). 17

Table 11: Metadata for PID 1336 dumped using the Procexedump plugin (Prolaco). 18

Table 12: Metadata for PID 1336 dumped using the Procmemdump plugin (Prolaco). 18

Table 13: Detection of infection for dumped memory files using Memdump, Procexedump
and Procmemdump plugins (Prolaco) ... 19

Table 14: Volatility output for the Hivelist plugin (Prolaco) .. 21

Table 15: Matching of potentially infected carved data file vs. scanner (SpyEye). 29

Table 16: Volatility output for the Pslist plugin sorted by PID (SpyEye). 31

Table 17: Volatility output for the Psscan plugin sorted by PID (SpyEye). 32

Table 18: Volatility output for the Psxview plugin sorted by PID (SpyEye). 33

Table 19: Process instantiation for suspicious processes (SpyEye) .. 35

Table 20: Volatility output for the Connscan plugin (SpyEye) ... 36

Table 21: Volatility Sockets and Sockscan plugin output sorted by PID (SpyEye) 37

Table 22: Scanner infection detection for dumped memory samples from the Malfind plugin
(SpyEye) .. 42

Table 23: SHA1 vs. filename for Malfind dumped memory samples (SpyEye) 44

Table 24: Metadata for PID 1008 dumped using the Memdump plugin (SpyEye) 47

Table 25: Metadata for PID 2268 dumped using the Memdump plugin (SpyEye) 48

Table 26: Metadata for PID 1008 dumped using the Procexedump plugin (SpyEye) 50

Table 27: Metadata for PID 1008 dumped using the Procmemdump plugin (SpyEye) 51

Table 28: Volatility output for the Hivelist plugin (SpyEye) .. 52

Table B.1: List of Volatility 2.2 plugins. ... 73

DRDC Valcartier TM 2013-155 ix

Table C.1: SHA1 hash vs. NSRL filename for carved data files (Prolaco) 77

Table C.2: SHA1 hash vs. NSRL filename for carved data files (SpyEye) 77

Table E.1: Fuzzy hashes for Malfind-dumped processes (SpyEye) .. 83

x DRDC Valcartier TM 2013-155

Acknowledgements

The author would like to thank Mr. Francois Rheaume, Defence Scientist, for peer reviewing this
text and providing helpful comments to improve it. Furthermore, the author extends his gratitude
to Mr. Martin Salois, Defence Scientist, for translating portions of this text.

DRDC Valcartier TM 2013-155 xi

Disclaimer policy

It must be understood from the outset that this technical memorandum examines computer
malware and that handling virulent software is not without risk. As such, the reader should ensure
that he has taken all the necessary precautions to avoid infecting his own computer system and
those around him, whether on a corporate network or isolated system.

The reader should neither construe nor interpret the work described herein by the author as an
endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,
construed, implied or otherwise. Moreover, the author does not endorse the specific use of one
specific anti-virus product, the use of Volatility or any data carving technology. Many similar
software tools, utilities and scanners exist beyond those used herein. They may be commercial,
free or open source in nature and as such, the onus is on the reader to determine which software
best suits his specific needs. While the author felt most comfortable working from within a Linux
environment, the author does not specifically recommend the use of such a system for the reader.
Instead, the reader should use the environment in which he is most comfortable.

Furthermore, the author of this technical memorandum absolves himself in all ways conceivable
with respect to how the reader may use, interpret or construe this technical memorandum. The
author assumes absolutely no liability or responsibility, implied or explicit. Moreover, the onus is
on the reader to be appropriately equipped and knowledgeable in the application of digital
forensics. Due to the offensive nature of computer malware, the author is no way responsible for
the reader’s use of any malware, whether examined herein or otherwise, in any offensive or
defensive nature against any other entity, or even against the reader himself, for any purposes
whatsoever, for any construed reasons.

Finally, the author and the Government of Canada are henceforth absolved of all wrongdoing,
whether intentional, unintentional, construed or misunderstood on the part of the reader. If the
reader does not agree to these terms, then his copy of this technical memorandum should be
destroyed. Only if the reader agrees to these terms should he or she continue in reading it beyond
this point. It is further assumed by all participants that if the reader has not read said Disclaimer
upon reading this technical memorandum and has acted upon its contents, then the reader assumes
all responsibility for any repercussions that may result from the information and data contained
herein.

xii DRDC Valcartier TM 2013-155

Requirements, assumptions and exclusions

The author assumes that the reader is altogether familiar with digital forensics and the various
techniques and methodologies associated therein. This technical memorandum is not an
introduction to digital forensics or to said techniques and methodologies. However, it will
endeavour to ensure that the reader can carry out his own forensic analysis of computer memory
images suspected of malware infection.

The experimentation conducted throughout this technical memorandum has been carried out atop
a Fedora Core 18 64-bit Linux operating system. Six different anti-virus scanners were used
throughout this investigation. They include, in alphabetical order, AVG, Avast, BitDefender,
ClamAV, FRISK F-Prot and McAfee command line scanners. As for data carving tools and
utilities, the author used Photorec, part of the Testdisk suite of data recovery tools.

The reader is required to have permission to use these tools on his computer system or network.
Use of these tools and the analysis of virulent software always carry some inherent risk that must
be adequately and securely managed and mitigated.

An in-depth study of memory analysis techniques is outside the scope of this work, as it requires
a comprehensive study of Windows operating system internals and software reverse engineering
techniques, both of which are difficult subjects to approach. Instead, this work should be
considered as a guide to using the Volatility memory analysis framework with respect to malware
infection.

When examining files dumped using the malfind, memdump, procexedump and procmemdump
plugins the use of the terms processes, memory sample files and memory dump files are used
interchangeably.

Finally, the use of masculine is employed throughout this text to simplify it.

DRDC Valcartier TM 2013-155 xiii

Target audience

The targeted audience for this technical memorandum is the computer forensic investigator who
assesses suspect computer memory images for evidence of infection. Although computer memory
analysis is a new field within the realm of digital forensics, there are those who have been
conducting malware analysis and software reverse engineering for years, long before it came to
attention of most practitioners. Those seasoned veterans are aptly skilled and their abilities took
years to develop. Thus, a framework such as Volatility, while capable of providing insight to
novices, is all the more capable in the hands of experts.

The author has written this technical memorandum for others who, like himself, are required from
time to time to conduct memory malware assessments and investigations. However, the author,
like many others, is not seasoned enough to take full advantage of Volatility’s capabilities. As
such, this technical memorandum combines both traditional forensic investigative techniques,
coupled with Volatility’s non-expert plugins, in order to develop an investigative how-to for non-
memory experts.

xiv DRDC Valcartier TM 2013-155

1 Background

1.1 Objective

The objective of this technical memorandum is to examine how a computer forensic investigator,
without specialised computer memory or software reverse engineering knowledge, can
successfully investigate a memory image suspected of infection. More specifically, this document
provides a methodological approach novice memory analysts can use to investigate suspected
memory images.

The work carried out herein is based on two publicly available memory images, specifically
Prolaco and SpyEye. This document, the second in a series of many, examines the investigative
techniques necessary for a novice to conduct such memory analyses on his own. The first report
on this topic written by the author examined the Zeus Trojan Horse, found in TM 2013-018 [22].

Ultimately, these reports will provide a methodological and foundational framework that novice
memory analysts and experienced investigators alike can rely on for guidance.

1.2 Why write new tutorials?

The purpose of writing new tutorials was addressed in the first report of this series. [22]

1.3 Infected memory image information

The infected Prolaco and SpyEye memory dump files examined herein were procured from the
following location: http://code.google.com/p/volatility/wiki/PublicMemoryImages. Their SHA1
hashes, in uncompressed, form are as follows:

Table 1: Infected memory image metadata.

Memory image name Size (MiB) SHA1 hash value

prolaco.vmem 128 (exactly) 85263aec5f1d4c4f5d18a3ba88036602ac06db5
1

spyeye.vmem 512 (exactly) 5f94d263dfbabaf4373c21e0ff4ba0c4ca0e0921

1.4 Data carving

An in-depth examination of data carving can be found in two memorandums written by the
author, specifically [22][23].

DRDC Valcartier TM 2013-155 1

http://code.google.com/p/volatility/wiki/PublicMemoryImages

1.5 Malware and anti-virus scanners

1.5.1 Specifics

An examination of malware and anti-virus scanner specifics can be found in [22].

1.5.2 Caveat

An analysis concerning the caveats of using malware and anti-virus scanners was conducted in
[22].

1.6 Detailed list of software tools used

1.6.1 Anti-virus scanners

This memorandum makes use of six anti-virus scanners, the same six used in [22] because they
continue to represent a diverse cross-section of various detection mechanisms necessary to detect
various malware. Each scanner was last updated August 5, 2013, the date upon which the analysis
was carried out herein. Scanner specifics are listed in the following table:

Table 2: List of anti-virus scanners and their command line parameters.

Anti-virus scanner Command line parameters

AVG 2013 command line scanner
version 13.0.3114 -H -P -p

Avast v.1.3.0 command line scanner -c

BitDefender for Unices v7.90123
Linux-amd64 scanner command line No parameters used

ClamAV 0.97.8/17633/Tue Aug 6
11:04:00 2013 command line scanner

--detect-pua=yes --detect-broken=yes
-r

FRISK F-Prot version 6.3.3.5015
command line scanner -u 4 -s 4 -z 10 --adware --applications

McAfee VirusScan for Linux64
Version 6.0.3.356 command line
scanner

--RECURSIVE --ANALYZE --MANALYZE
--MIME --PANALYZE --UNZIP
--VERBOSE

1.6.2 Data carving

Photorec was used for data carving. The specifics concerning the version and program settings are
examined in [22].

2 DRDC Valcartier TM 2013-155

1.6.3 Volatility

An examination of Volatility, its capabilities, main authors and contributors is found in [22].

A list of Windows-specific plugins currently supported by this version Volatility is described in
Annex B.

1.7 Investigative methodology

The investigative methodology has evolved slightly changed since it was first proposed when
examining and analysing the Zeus-infected computer memory image. The original methodology
is found in [22].

The following modifications pertain to Part 6 of the methodology. It was adapted so that it can be
applied to infections not relying on the Windows registry or which leave little trace of itself in
memory. The proposed additions are as follows:

Part 6:

1. Using strings-based extraction, find all 7, 8, 16 and 32-bit strings for the memory
image and all suspect or infected process-based dumps. Using established filters or
wordlists, determine which strings are likely applicable to the current infection,
investigation or analysis. Wordlists may be created as needed based on the
underlying context. Determining which strings are applicable to the current infection
is largely manual in nature although wordlists should considerably reduce the output
to be analysed.

2. Equipped with a list of applicable strings, determine their context with respect to the
current suspect infection and then if possible establish the presence and behaviour of
the malware.

DRDC Valcartier TM 2013-155 3

2 Memory investigation and analysis of Prolaco

2.1 Background

This analysis examines a memory image suspected of harbouring the Prolaco worm, as based on
the methodology put forward in Section 1.7. Little useful information could be found concerning
the technical details of this infection, contrary to the plethora of information available for the
Zeus infection examined in TM 2013-018 [22]. What was found in [2][3] and [4] did not provide
any clear indicators of compromise concerning this specific malware infection.

2.2 Preliminary investigative steps

The steps examined in this subsection should be considered as preliminary investigative steps
necessary for examining a potentially infected memory image.

2.2.1 Safeguard the memory image

The memory image prolaco.vmem was set to immutable atop an Ext4-based filesystem. The
command used to perform this, carried out as the root user, was:

 $ sudo chattr +i prolaco.vmem

This results in a memory image that can no longer be modified, even by the root user. This is to
prevent accidental modifications from occurring to this file.

2.2.2 Preliminary anti-virus scanning results

Scanning only the memory image itself with the six scanners outlined in Section 1.6.1, it was
determined that, unlike the Zeus infected memory image (see [22] for details) none of them
identified the memory image as infected.

Even though no infection was found, all scanner results were saved for possible future use.

2.2.3 Data carving and file hashing

Photorec succeeded in recovering 804 files carved from the Prolaco memory image as per the
recommended Photorec settings put forward in Section 1.6.2. Twenty-three duplicate files were
found, thereby leaving 781 unique files recovered. Of those 804 recovered files, 238 were
identified as PE-based files. Of those, 126 were identified as Windows 32-bit DLLs, while 112
were identified as standard Windows 32-bit PEs and device drivers. No 64-bit PE-based files
were identified nor were any UPX-based files detected.

Other file types were detected but were of no immediate use. However, their types were recorded
and saved for possible future use within this analysis.

4 DRDC Valcartier TM 2013-155

All recovered files were SHA1-hashed and then validated against NSRL hash-set 2.40 (March
2013). Results were stored for future use. Two SHA1 hashes were confirmed as matches against
the NSRL hash-set. Information including NSRL matching filenames can be found in Annex C.1.

Finally, CTPH-based hashing (fuzzy hashing) was conducted using the ssdeep tool against the
carved data files and stored for future use.

2.2.4 Anti-virus scanning and file hashing results for carved data files

Using the six scanners and combining their output through UNIX command line processing tools
(e.g. cat, sort, find, tr, strings, awk, grep, uniq, etc.), two matches were established between
scanners AVG and ClamAV. These matches were files f0139704.exe and f0235672.dll which are
found indicated accordingly in Annex A.1. A match occurs when two or more scanners detect a
file as infected or possibly malicious.

Of the six scanners, only three were capable of detecting one or more potential infections. These
scanners included AVG, BitDefender and ClamAV. Interestingly, none of these potentially
infected files were detected as the Prolaco worm or anything else remotely resembling the name
of this infection. The following table details the two files that were matched between the AVG
and ClamAV scanners.

Table 3: Matching of potentially infected carved data file vs. scanner (Prolaco)

Potentially infected file Detecting scanner

 f0139704.exe AVG

 ClamAV

 f0235672.dll AVG

 ClamAV

Specific logs for each scanner can be found in Annex A.1.

2.3 Volatility analysis

In order to investigate this specific memory image the use and output of various Volatility plugins
of assistance to this particular analysis are examined.

2.3.1 Step 1: Determine background information

This step examines the Volatility plugins used to provide background information and context to
the memory image.

DRDC Valcartier TM 2013-155 5

2.3.1.1 Imageinfo plugin

This Volatility plugin is used to provide basic contextual information about a suspect memory
image.

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
imageinfo”:

Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86
(Instantiated with WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace
(/media/scratch/Report2_SpyEye_Prolaco/Prolaco/prolaco.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80544ce0
 Number of Processors : 1
 Image Type (Service Pack) : 2
 KPCR for CPU 0 : 0xffdff000
 KUSER_SHARED_DATA : 0xffdf0000
 Image date and time : 2010-08-11 17:55:09 UTC+0000
 Image local date and time : 2010-08-11 13:55:09 -0400

This memory image appears to be running atop a 32-bit Windows XP computer system with
Service Pack 2. It is equipped with one PAE-based processor and the memory image is 128 MiB
in size (based on the memory image’s size determined using ls -l). The memory image was
captured August 11, 2010 at 13:55:09 EDT.

2.3.1.2 Pslist plugin

The next step is to determine which processes are running within the memory image in order to
determine if anything out of the ordinary is immediately visible. The pslist plugin provides a
detailed process listing. It makes use of virtual memory addresses and offsets.

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
pslist”:

Table 4: Volatility output for the Pslist plugin sorted by PID (Prolaco).

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x810b1660 System 4 0 56 253 ------ 0

0xff25a7e0 alg.exe 216 676 6 104 0 0 2010-08-11 06:06:39

0xff3667e8 VMwareTray.exe 432 1724 1 49 0 0 2010-08-11 06:09:31

0xff374980 VMwareUser.exe 452 1724 5 176 0 0 2010-08-11 06:09:32

0x80f94588 wuauclt.exe 468 1028 3 130 0 0 2010-08-11 06:09:37

0xff2ab020 smss.exe 544 4 3 21 ------ 0 2010-08-11 06:06:21

0xff1ecda0 csrss.exe 608 544 11 349 0 0 2010-08-11 06:06:23

0xff1ec978 winlogon.exe 632 544 19 565 0 0 2010-08-11 06:06:23

6 DRDC Valcartier TM 2013-155

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0xff247020 services.exe 676 632 16 269 0 0 2010-08-11 06:06:24

0xff255020 lsass.exe 688 632 19 341 0 0 2010-08-11 06:06:24

0xff218230 vmacthlp.exe 844 676 1 24 0 0 2010-08-11 06:06:24

0x80ff88d8 svchost.exe 856 676 16 198 0 0 2010-08-11 06:06:24

0xff364310 wscntfy.exe 888 1028 1 27 0 0 2010-08-11 06:06:49

0xff217560 svchost.exe 936 676 9 256 0 0 2010-08-11 06:06:24

0x80fbf910 svchost.exe 1028 676 63 1334 0 0 2010-08-11 06:06:24

0xff38b5f8 TPAutoConnect.e 1084 1968 1 61 0 0 2010-08-11 06:06:52

0xff22d558 svchost.exe 1088 676 4 75 0 0 2010-08-11 06:06:25

0xff37a4b0 ImmunityDebugge 1136 1724 2 73 0 0 2010-08-11 16:50:19

0xff203b80 svchost.exe 1148 676 14 207 0 0 2010-08-11 06:06:26

0xff1d7da0 spoolsv.exe 1432 676 13 135 0 0 2010-08-11 06:06:26

0xff1b8b28 vmtoolsd.exe 1668 676 5 219 0 0 2010-08-11 06:06:35

0xff3865d0 explorer.exe 1724 1708 11 294 0 0 2010-08-11 06:09:29

0xff1fdc88 VMUpgradeHelper 1788 676 3 97 0 0 2010-08-11 06:06:38

0xff143b28 TPAutoConnSvc.e 1968 676 5 100 0 0 2010-08-11 06:06:39

Certain process names are not particularly common, including alg.exe and
ImmunityDebugger.exe. However, the use of Immunity is not necessarily indicative of an
infection. Instead, it merely signifies that some individual on this computer system was running a
debugger.

VMware-based processes including vmacthlp.exe, VMUpgradeHelper.exe, TPAutoConnSvc.exe,
VMwareTray.exe and VMwareUser.exe should not, in of themselves, raise any specific suspicion.

Possibly suspicious is the presence of process alg.exe, the Windows Application Layer Gateway,
a process used to establish specific types of connections commonly used for Instant Messaging,
RTSP, BitTorrent, SIP and FTP [1]. By itself, this process is not necessarily suspicious but the
services that could be used by a potential infection may be using this service to provide a means
of establishing an illicit communication. Further analysis using the psscan and connscan plugins
may be of further help.

2.3.1.3 Psscan plugin

The psscan plugin uses physical memory addresses and scans memory images for _EPROCESS
pool allocations, in contrast to the pslist plugin that uses virtual memory addresses and scans for
EPROCESS lists. The benefit of using this plugin is that sometimes it can succeed in listing
processes that cannot be found using any of the other process listing plugins (i.e., pslist and
pstree).

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
psscan”:

DRDC Valcartier TM 2013-155 7

Table 5: Volatility output for the Psscan plugin sorted by PID (Prolaco)

Offset(P) Name PID PPID PDB Time created Time exited

0x01214660 System 4 0 0x00319000

0x05f027e0 alg.exe 216 676 0x06cc0240 2010-08-11 06:06:39

0x04be97e8 VMwareTray.exe 432 1724 0x06cc02e0 2010-08-11 06:09:31

0x04b5a980 VMwareUser.exe 452 1724 0x06cc0300 2010-08-11 06:09:32

0x010f7588 wuauclt.exe 468 1028 0x06cc0180 2010-08-11 06:09:37

0x05471020 smss.exe 544 4 0x06cc0020 2010-08-11 06:06:21

0x066f0da0 csrss.exe 608 544 0x06cc0040 2010-08-11 06:06:23

0x066f0978 winlogon.exe 632 544 0x06cc0060 2010-08-11 06:06:23

0x06015020 services.exe 676 632 0x06cc0080 2010-08-11 06:06:24

0x05f47020 lsass.exe 688 632 0x06cc00a0 2010-08-11 06:06:24

0x06384230 vmacthlp.exe 844 676 0x06cc00c0 2010-08-11 06:06:24

0x0115b8d8 svchost.exe 856 676 0x06cc00e0 2010-08-11 06:06:24

0x04c2b310 wscntfy.exe 888 1028 0x06cc0200 2010-08-11 06:06:49

0x063c5560 svchost.exe 936 676 0x06cc0100 2010-08-11 06:06:24

0x01122910 svchost.exe 1028 676 0x06cc0120 2010-08-11 06:06:24

0x049c15f8 TPAutoConnect.exe 1084 1968 0x06cc0220 2010-08-11 06:06:52

0x061ef558 svchost.exe 1088 676 0x06cc0140 2010-08-11 06:06:25

0x04a544b0 ImmunityDebugger 1136 1724 0x06cc02a0 2010-08-11 16:50:19

0x0640ac10 msiexec.exe 1144 420 0x06cc0340 2010-08-11 16:49:33 2010-08-11 16:50:08

0x06499b80 svchost.exe 1148 676 0x06cc0160 2010-08-11 06:06:26

0x005f23a0 rundll32.exe 1260 1724 0x06cc0360 2010-08-11 16:50:29 2010-08-11 16:50:42

0x0113f648 1_doc_RCData_61 1336 1136 0x06cc0340 2010-08-11 16:50:20

0x06945da0 spoolsv.exe 1432 676 0x06cc01a0 2010-08-11 06:06:26

0x069d5b28 vmtoolsd.exe 1668 676 0x06cc01c0 2010-08-11 06:06:35

0x04a065d0 explorer.exe 1724 1708 0x06cc0280 2010-08-11 06:09:29

0x0655fc88 VMUpgradeHelper 1788 676 0x06cc01e0 2010-08-11 06:06:38

0x0211ab28 TPAutoConnSvc.exe 1968 676 0x06cc0260 2010-08-11 06:06:39

The listing from the psscan plugin appears moderately similar to the output of the pslist plugin.
However, several processes are listed for the first time herein. Moreover, process
1_doc_RCData_61 has a very suspicious name, likely indicative of a non-Windows process, tool
or application. It has been highlighted in red above. Finally, consider that malware commonly
uses non-Windows names for their launched processes.

2.3.1.4 Differentiating the output between the pslist and psscan plugins

Highlighting the differences between the output from the pslist and psscan plugins may not be
obvious at first glance. For this task, shell-based text processing is of significant use. By using the
following command, it is readily possible to differentiate the between the two plugins’ output:

8 DRDC Valcartier TM 2013-155

$ cat pslist.txt psscan.txt | awk '{print $2"\t"$3}' | sort |
uniq –c | grep –v “ 2”

This command results in the following output:

1 -------------------- ------
1 ---------------- ------
1 1_doc_RCData_61 1336
1 msiexec.exe 1144
1 rundll32.exe 1260

Thus, by using these commands, it was determined that the differences between these two plugins
(pslist and psscan) are processes 1_doc_RCData_61, msiexec.exe and rundll32.exe.

2.3.1.5 Psxview plugin

Volatility provides an additional capability for detecting hidden running processes. The psxview
plugin provides a detailed listing of processes running in a memory image by using five specific
process detection methods. These include pslist, psscan, thrdproc, pspcdid and csrss.

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
psxview”:

Table 6: Volatility output for the Psxview plugin sorted by PID (Prolaco).

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x01214660 System 4 True True True True False

0x05f027e0 alg.exe 216 True True True True True

0x04be97e8 VMwareTray.exe 432 True True True True True

0x04b5a980 VMwareUser.exe 452 True True True True True

0x010f7588 wuauclt.exe 468 True True True True True

0x05471020 smss.exe 544 True True True True False

0x066f0da0 csrss.exe 608 True True True True False

0x066f0978 winlogon.exe 632 True True True True True

0x06015020 services.exe 676 True True True True True

0x05f47020 lsass.exe 688 True True True True True

0x06384230 vmacthlp.exe 844 True True True True True

0x0115b8d8 svchost.exe 856 True True True True True

0x04c2b310 wscntfy.exe 888 True True True True True

0x063c5560 svchost.exe 936 True True True True True

0x01122910 svchost.exe 1028 True True True True True

0x049c15f8 TPAutoConnect.e 1084 True True True True True

DRDC Valcartier TM 2013-155 9

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x061ef558 svchost.exe 1088 True True True True True

0x04a544b0 ImmunityDebugge 1136 True True True True True

0x0640ac10 msiexec.exe 1144 False True False False False

0x06499b80 svchost.exe 1148 True True True True True

0x005f23a0 rundll32.exe 1260 False True False False False

0x0113f648 1_doc_RCData_61 1336 False True True True True

0x06945da0 spoolsv.exe 1432 True True True True True

0x069d5b28 vmtoolsd.exe 1668 True True True True True

0x04a065d0 explorer.exe 1724 True True True True True

0x0655fc88 VMUpgradeHelper 1788 True True True True True

0x0211ab28 TPAutoConnSvc.e 1968 True True True True True

Note that some processes listed as hidden using the csrss method are not always hidden. For
Windows 7 and Vista systems, the list of internal processes is not available and in some cases for
Windows XP required memory pages may have been swapped out, thereby affecting the outcome.
[19]

However, what is not normal is that the three processes identified in the previous subsection
(Section 2.3.1.4) are hidden, at a minimum, from pslist. These hidden processes are highlighted in
red above.

2.3.1.6 Correlating PIDs and PPIDs

Examining the output established thus far based on the pslist, psscan and psxview plugins, the
following information can be established with respect to process instantiation.

Table 7: Process instantiation for suspicious processes (Prolaco).

PPID name PPID PID PID name

N/A 1708 1724 explorer.exe

explorer.exe 1724 1136 ImmunityDebugger

explorer.exe 1724 1260 rundll.exe

ImmunityDebugger 1136 1336 1_doc_RCData_61

Thus, it can be inferred that from process explorer.exe (PID 1724), the Immunity Debugger (PID
1136) was launched and from therein the Prolaco worm (PID 1336) was instantiated within the
Debugger.

10 DRDC Valcartier TM 2013-155

Based on this chain, it is unlikely that process msiexec.exe (PID 1144), which was previously
thought of as potentially suspicious, should continue to be suspected as no information
whatsoever could be found concerning its instantiating process PPID 420.

The next step is to determine if other plugins can reveal evidence of this infection.

2.3.2 Step 2: Assess other sources of evidence

This step examines various Volatility plugins that can be used to establish additional evidence
concerning the memory image.

2.3.2.1 Cmdscan and consoles plugins

Plugins cmdscan and consoles may reveal additional information about commands typed into a
command shell. Querying a memory image using these two plugins is carried out using the
following commands:

$ volatility -f prolaco.vmem cmdscan

$ volatility -f prolaco.vmem consoles

These two plugins revealed absolutely no information whatsoever.

2.3.2.2 Connscan plugin

The first network-based Volatility plugin that should be used is connscan. It is used to verify the
existence of ongoing network connections and scans a memory image for current or recently
terminated connections.

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
connscan”:

Table 8: Volatility output for the Connscan plugin (Prolaco).

Offset(P) Local Address Remote Address PID
0x02214988 172.16.176.143:1148 67.208.216.86:80 1136
0x06015ab0 172.16.176.143:1149 67.208.216.86:80 1136

Based on this information, PID 1136 is the Immunity Debugger and it is in the process of
communicating with an Immunity-specific computer system. More specifically, web searches
reveal that computer system 67.208.216.86 is in fact computer system debugger.immunityinc.com
and that this IP address is registered to TERRENAP DATA CENTERS, INC.

Thus, whatever was exchanged in that traffic stream, while likely relating to the Prolaco worm,
was not initiated by it. Instead, it appears to have been established by the Immunity Debugger.

DRDC Valcartier TM 2013-155 11

2.3.2.3 Connections plugin

The connections plugin can be used to determine information concerning recently terminated and
ongoing communications. It therefore makes sense to use this plugin to query a memory image
for additional network-based information.

However, using command “volatility -f prolaco.vmem connections” yielded no output
whatsoever.

2.3.2.4 Sockets and sockscan plugins

Volatility offers two additional network-based plugins, sockets and sockscan. The sockets plugin
lists open sockets that may provide additional information about covert network channels, while
the sockscan plugin scans a suspect memory image for all TCP sockets. Generally, the output is
the same for both plugins with the exception of memory addresses, where the sockets plugin uses
virtual memory addressing while the sockscan plugin uses physical memory addressing.

Thus, using the following commands it will be possible to determine which processes have open
networks sockets ready for communications:

$ volatility -f prolaco.vmem sockets > sockets.txt

$ volatility -f prolaco.vmem sockscan > sockscan.txt

$ cat sockets.txt sockscan.txt | sort | awk ‘{$1=””;print}’ |
uniq > sockets_sockscan.txt

The output of file sockets_sockscan.txt appears as shown in the following table:

Table 9: Volatility Sockets and Sockscan plugin output sorted by PID (Prolaco).

PID Port Proto Protocol Address Create Time

4 445 6 TCP 0.0.0.0 2010-08-11 06:06:17

4 445 17 UDP 0.0.0.0 2010-08-11 06:06:17

4 0 47 GRE 0.0.0.0 2010-08-11 06:08:00

4 1033 6 TCP 0.0.0.0 2010-08-11 06:08:00

4 139 6 TCP 172.16.176.143 2010-08-11 06:06:28

4 137 17 UDP 172.16.176.143 2010-08-11 06:06:28

4 138 17 UDP 172.16.176.143 2010-08-11 06:06:28

216 1026 6 TCP 127.0.0.1 2010-08-11 06:06:39

688 500 17 UDP 0.0.0.0 2010-08-11 06:06:35

688 4500 17 UDP 0.0.0.0 2010-08-11 06:06:35

688 0 255 Reserved 0.0.0.0 2010-08-11 06:06:35

936 135 6 TCP 0.0.0.0 2010-08-11 06:06:24

12 DRDC Valcartier TM 2013-155

PID Port Proto Protocol Address Create Time

1028 123 17 UDP 127.0.0.1 2010-08-11 06:06:39

1028 123 17 UDP 172.16.176.143 2010-08-11 06:06:39

1088 1025 17 UDP 0.0.0.0 2010-08-11 06:06:38

1088 1147 17 UDP 0.0.0.0 2010-08-11 16:50:22

1148 1900 17 UDP 172.16.176.143 2010-08-11 06:06:39

1148 1900 17 UDP 127.0.0.1 2010-08-11 06:06:39

Looking at this data, based on the various PIDs and PPIDs of interest (1136 (Immunity
Debugger), 1144 (msiexec.exe), 1260 (rundll32.exe), 1336 (1_doc_RCData_1), 1708 (unknown)
and 1724 (explorer.exe)) established thus far, none of the port-enabled processes listed in this
table corresponds to these processes.

Thus, when the results of the sockets and sockscan plugins are taken together with the results of
the connscan and connections plugins, it appears that the Prolaco worm is not currently in the
midst of initiating or maintaining any network connections, sockets or streams.

2.3.2.5 Filescan plugin

If an infection is active and does not show itself via the network then the filescan plugin may be
of assistance as the plugin may be able to find open file handles in memory. Unfortunately, no
direct link to these handles is possible as the physical disk image is not available for analysis.
This plugin makes use of physical address offsets.

The preferred method for detecting indicators of compromise is twofold. First, using keywords
(e.g. Prolaco, infection, rootkit, worm, etc.) it may be possible to find the infection, as malware
programmers do not often use innocuous looking filenames. Of course, this is at best a hit and
miss approach. Secondly, it can be attempted to detect suspicious files based on their locations.
However, this requires that the investigator has a very good working knowledge of the underlying
operating system as just looking at filenames1 and locations will not produce meaningful results,
unless something really sticks out.

However, unlike the Zeus memory analysis report [22], there is little useful information available
on the web concerning the Prolaco worm, thus, few indicators can be readily used as keywords.
Using additional filename keyword information as provided in [20], additional keyword filters
could be used in conjunction with the filescan plugin.

Running command “volatility -f prolaco.vmem filescan | grep -i -P
‘(1_doc_RCData_612|virus|Trojan|rootkit|worm|Prolaco|rundll|msiexec|google|wmimngr|jusche
d|wfmngr|wupmgr|java|wpmgr|nvscpapisvr)’ ” results in the following output:

1 Recall that a reliable source of filenames is the NSRL hash-set. It can be broken down by software
product and operating system.

DRDC Valcartier TM 2013-155 13

0x010bd028 1 0 R--r-d
\Device\HarddiskVolume1\WINDOWS\system32\rundll32.exe

0x01188cb8 1 0 R--rw- \Device\HarddiskVolume1\Documents
and Settings\Administrator\Desktop\1_doc_RCData_612.exe

0x04a97248 1 0 R--r-d
\Device\HarddiskVolume1\WINDOWS\system32\msiexec.exe

0x05fbed48 1 0 R--r-d
\Device\HarddiskVolume1\WINDOWS\system32\rundll32.exe

0x07fbc538 1 0 R--r-d \Device\HarddiskVolume1\Documents
and Settings\Administrator\Desktop\1_doc_RCData_612.exe

Based on this output, it is readily established that processes msiexec.exe and rundll32.exe are
located in C:\Windows\system32. Thus, there is little reason to continue suspecting these two
processes anymore. However, the malware’s suspicious process has been clearly
(1_doc_RCData_612.exe) found and it is highlighted in red in the above output.

2.3.2.6 Mutantscan plugin

The Volatility mutantscan can sometimes reveal interesting information about Windows thread-
based mutexes in memory. It makes use of physical offset addressing.

Using command “volatility -f prolaco.vmem mutantscan” yielded the following pertinent
information after pruning the output (as the output is several pages long):

0x010ac258 2 1 0 0xff144c08 1336:1204
GoogleUpte.exeDm28sf0V@XK$NX8hOu

This output indicates that suspicious process PID 1336 (1_doc_RCData_61) is relying on a mutex
named “GoogleUpte.exeDm28sf0V@XK$NX8hOu.” It can be inferred that this highly suspicious
process is making use of some potentially malicious mutex with an innocuous looking name so as
not to cause alarm.

2.3.2.7 Handles plugin

The Volatility handles plugin can reveal interesting information about processes and resources
attached or associated to them that might not be found using previously examined plugins. It
makes use of virtual offset addressing.

Using command “volatility -f prolaco.vmem handles,” the following pruned output is of interest
to the investigation and is as follows:

0x80fdc648 608 0x2b4 0x1f0fff Process 1_doc_RCData_61(1336)

0xff144c08 608 0x3c8 0x1f03ff Thread TID 1204 PID 1336

0x80fdc648 1136 0x124 0x12067b Process 1_doc_RCData_61(1336)

14 DRDC Valcartier TM 2013-155

0x80fdc648 1136 0x78 0x1f0fff Process 1_doc_RCData_61(1336)

0xff144c08 1136 0x11c 0x12007b Thread TID 1204 PID 1336

0xff144c08 1136 0x7c 0x1f03ff Thread TID 1204 PID 1336

From this output, it can be determined that thread TID 1204 is a thread of process PID 1336
(1_doc_RCData_61), highlighted in red above. Moreover, PID 1336 very likely relies on, at least
partially, certain Windows-based console functions provided by csrss.exe (PID 608) [21],
highlighted in yellow.

2.3.2.8 Threads plugin

The final Volatility plugin to be used in this step is the threads plugin. Armed with the
information provided by the handles plugin, it is worthwhile investigating the information
uncovered about TID 1204. Using command “volatility -f prolaco.vmem threads -p 1336” yields
the following information:

ETHREAD: 0x00353c08 Pid: 1336 Tid: 1204
Tags: ScannerOnly
Created: 2010-08-11 16:50:20
Exited: 1970-01-01 00:00:00
Owning Process: 1_doc_RCData_61
Attached Process: 1_doc_RCData_61
State: Waiting:Executive
BasePriority: 0x8
Priority: 0xa
TEB: 0x7ffdf000
StartAddress: 0x7c810867 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0xe1702858
CrossThreadFlags:

Thus, suspicious thread TID 1204 is without doubt a subset (i.e. thread) of PID 1336.

2.3.3 Step 3: Dump and assess suspicious process

The evidence established thus far indicates that one process, PID 1336 (1_doc_RCData_61) is
very likely the infection sought after. This step examines various methods for dumping the
process and then evaluating it.

2.3.3.1 Create data directories

Create directories malfind, memdump, procexedump and procmemdump for storing memory
samples that are to be dumped from the memory image using corresponding Volatility plugins.
This is done using the following commands:

DRDC Valcartier TM 2013-155 15

 $ mkdir malfind

 $ mkdir memdump

 $ mkdir procexedump

 $ mkdir procmemdump

2.3.3.2 Malfind plugin

Volatility’s malfind plugin was specifically designed to search for malware hidden through code
injection. If memory address offsets are specified then they must be physical memory address
offsets.

Using command “volatility -f prolaco.vmem -p 1336 -o 0x0113f648 malfind --dump-dir=malfind”
it was attempted to find and dump injected malicious code associated with process
1_doc_RCData_612.exe. This command resulted in no output.

Attempting to use this plugin at large against the infected memory image, using command
“volatility -f prolaco.vmem malfind” resulted in the following non-pertinent output:

Process: csrss.exe Pid: 608 Address: 0x7f6f0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x7f6f0000 c8 00 00 00 ff 01 00 00 ff ee ff ee 08 70 00 00 p..
0x7f6f0010 08 00 00 00 00 fe 00 00 00 00 10 00 00 20 00 00
0x7f6f0020 00 02 00 00 00 20 00 00 8d 01 00 00 ff ef fd 7f
0x7f6f0030 03 00 08 06 00 00 00 00 00 00 00 00 00 00 00 00

0x7f6f0000 c8000000 ENTER 0x0, 0x0
0x7f6f0004 ff01 INC DWORD [ECX]
0x7f6f0006 0000 ADD [EAX], AL
0x7f6f0008 ff DB 0xff
0x7f6f0009 ee OUT DX, AL
0x7f6f000a ff DB 0xff
0x7f6f000b ee OUT DX, AL
0x7f6f000c 087000 OR [EAX+0x0], DH
0x7f6f000f 0008 ADD [EAX], CL
0x7f6f0011 0000 ADD [EAX], AL
0x7f6f0013 0000 ADD [EAX], AL
0x7f6f0015 fe00 INC BYTE [EAX]
0x7f6f0017 0000 ADD [EAX], AL
0x7f6f0019 0010 ADD [EAX], DL
0x7f6f001b 0000 ADD [EAX], AL
0x7f6f001d 2000 AND [EAX], AL
0x7f6f001f 0000 ADD [EAX], AL
0x7f6f0021 0200 ADD AL, [EAX]
0x7f6f0023 0000 ADD [EAX], AL
0x7f6f0025 2000 AND [EAX], AL
0x7f6f0027 008d010000ff ADD [EBP-0xffffff], CL
0x7f6f002d ef OUT DX, EAX
0x7f6f002e fd STD
0x7f6f002f 7f03 JG 0x7f6f0034
0x7f6f0031 0008 ADD [EAX], CL
0x7f6f0033 06 PUSH ES
0x7f6f0034 0000 ADD [EAX], AL

16 DRDC Valcartier TM 2013-155

0x7f6f0036 0000 ADD [EAX], AL
0x7f6f0038 0000 ADD [EAX], AL
0x7f6f003a 0000 ADD [EAX], AL
0x7f6f003c 0000 ADD [EAX], AL
0x7f6f003e 0000 ADD [EAX], AL

Thus, based on this plugin’s output, no malicious injected code was found.

Because no code injection was found for this memory image, there is no point in subsequent
plugins (memdump, procexedump, procmemdump) in attempting to perform additional analyses
of processes other than PID 1336 (1_doc_RCData_61) .

2.3.3.3 Memdump plugin

The memdump plugin is used to dump the addressable memory space of a given process. If
memory address offsets are specified then they must be physical memory address offsets. The
plugin dumps all data segments associated with the specified process to a single destination file.
The plugin is worth trying as the information attained from it, combined with any potential
information obtained from the malfind, procexedump and procmemdump plugins could be used in
the reverse engineering of the malware. The process likely to bear fruit from this memory image,
based on the analyses conducted thus far, is PID 1336.

The command used to dump the addressable memory space of PID 1336 was:

$ volatility -f prolaco.vmem memdump -p 1336 -o 0x0113f648 --
dump-dir=memdump

The file dumped as a result of this command had the following metadata:

Table 10: Metadata for PID 1336 dumped using the Memdump plugin (Prolaco).

Filename memdump/1336.dmp

Size 59,535,360 bytes

SHA1 hash 587bb4c246c42df4f8b10f7037807f2546d10b04

Fuzzy hash 393216:h2GN5vGNE+q329LVCH2BQNLCi/Jfac7nEAsibk6kpPyL:h2Gjd+S29Lm2BQN
LVacgA3bk6k5y

All file metadata information was saved for potential future use.

2.3.3.4 Procexedump plugin

Unlike the memdump plugin, the procexedump plugin dumps only a process’ executable code. If
memory address offsets are specified then they must be physical memory address offsets.

The process likely to bear fruit from this memory image, based on the analyses conducted thus
far, is PID 1336. The command used to this process’ executable code was:

DRDC Valcartier TM 2013-155 17

$ volatility -f prolaco.vmem procexedump -p 1336 -o 0x0113f648 --
dump-dir=procexedump

The file dumped as a result of this command had the following metadata:

Table 11: Metadata for PID 1336 dumped using the Procexedump plugin (Prolaco).

Filename procexedump/executable.1336.exe

Size 318,976 bytes

SHA1 hash 275f5321a563aa3e981001d94f8e863e2e22da3f

Fuzzy hash 6144:ZUg06lHuzJ2MZ7zB4H2Qy43Wk2LAyrRlEFcA9MQvM:ZUg0SOzYMZ7zB4H2i3
WpU79jU

All file metadata was saved for potential future use.

2.3.3.5 Procmemdump plugin

Unlike the memdump and procexedump plugins, the procmemdump plugin dumps a process’
executable code including associated slack space (all processes have some slack space). If
memory address offsets are specified then they must be physical memory address offsets.

The process likely to bear fruit from this memory image, based on the analyses conducted thus
far, is PID 1336. The command used to dump the process’ executable code and slack space was:

$ volatility -f prolaco.vmem procmemdump -p 1336 -o 0x0113f648 --
dump-dir=procmemdump

The file dumped as a result of these commands had the following metadata:

Table 12: Metadata for PID 1336 dumped using the Procmemdump plugin (Prolaco).

Filename procmemdump/executable.1336.exe

Size 348,160 bytes

SHA1 hash bbfa3a5dcbcff29e600c863e8c722c738bab9082

Fuzzy hash 6144:sUg06lHuzJ2MZ7zB4H2/y43Wk2LAyrRlEFcA9MQvM:sUg0SOzYMZ7zB4H2L3
WpU79jU

All file metadata was saved for potential future use.

18 DRDC Valcartier TM 2013-155

2.3.3.6 Virus scanning and hash verification of dumped processes

2.3.3.6.1 Scanner examination

Using the six anti-virus scanners against the three extracted files produced using memdump
(1336.dmp), procexedump (executable.1336.exe) and procmemdump (executable.1336.exe), the
following scanner results were obtained:

Table 13: Detection of infection for dumped memory files using Memdump, Procexedump and
Procmemdump plugins (Prolaco)

Scanner Plugin Output File (directory and
filename)

Infection Identification

 Avast memdump/1336.dmp Detected as non-infected

 procexedump/executable.1336.exe Infected by Win32:Malware-gen

 procmemdump/executable.1336.exe Infected by Win32:Malware-gen

 AVG memdump/1336.dmp Detected as non-infected

 procexedump/executable.1336.exe Infected by Worm/Generic2.FQ

 procmemdump/executable.1336.exe Infected by Worm/Generic2.FQ

 BitDefender memdump/1336.dmp Detected as non-infected

 procexedump/executable.1336.exe Infected by Gen:Trojan.Heur.tyW@Xw!!9Rai

 procmemdump/executable.1336.exe Infected by Gen:Trojan.Heur.vyW@XUoM8Moi

 ClamAV memdump/1336.dmp Detected as non-infected

 procexedump/1336.exe Detected as non-infected

 procmemdump/1336.exe Detected as non-infected

 FRISK memdump/1336.dmp Detected as non-infected

 procexedump/executable.1336.exe Detected as encrypted ZIP file

 procmemdump/executable.1336.exe Detected as encrypted ZIP file

 McAfee memdump/1336.dmp Detected as non-infected

 procexedump/executable.1336.exe Detected as non-infected

 procmemdump/executable.1336.exe Infected by Generic.dx!7B0F17C2C2E3

Only dumped file procexedump/executable.1336.dmp (obtained from plugin procexedump) was
found to match one of the scanner-specific infection detections. Specifically, this dumped file
received the same scanner message from the AVG scanner when it scanned carved data file
recup_dir.2/f0139704.exe. Both files received the detection of Worm/Generic2.FQ.

DRDC Valcartier TM 2013-155 19

File memdump/1336.dmp was detected as uninfected by all scanners. Only files
procexedump/executable.1336.exe and procmemdump/executable.1336.exe were detected as
infected by some of the scanners. More specifically, the former was detected by three scanners
while the latter was detected by four scanners.

2.3.3.6.2 Hash comparison

When comparing the fuzzy hashes of the three extracted files for PID 1336 (memdump,
procexedump and procmemdump) against the carved data files no matches were found. Thus,
what was recovered through data carving and what was recovered through Volatility differ so
greatly that even fuzzy hash matching determined that no discernible similarities could be found
between them.

However, between dumped files procexedump/executable.1336.exe and
procmemdump/executable.1336.exe, it was found that they had a 96% fuzzy hash similarity,
indicating they were very similar to one another. No fuzzy hash matches could be established
between procexedump/executable.1336.exe and memdump/1336.dmp or between
procmemdump/executable.1336.exe and memdump/1336.dmp.

SHA1 hash matching of the three Volatility recovered files yielded no matches against either the
NSRL or the carved data files.

2.3.4 Step 4: Examining the registry

The Windows registry serves to complicate and facilitate the investigator’s work. It is commonly
used by malware to configure system settings for permanent infection. However, the difficulty in
working with the registry lies in knowing where to look. The registry is spread out across many
data files (also commonly known as registry hives) in various locations and each serves a specific
purpose with respect to system, application and user configurations. Annex D provides a listing of
registry keys commonly used by malware.

2.3.4.1 Hivelist plugin

The purpose of using the hivelist plugin is to determine which registry hives2 are available in the
memory image.

Consider the following output from this plugin, using command “volatility -f prolaco.vmem
hivelist”:

2 A registry hive denotes the actual disk file and its location on disk.

20 DRDC Valcartier TM 2013-155

Table 14: Volatility output for the Hivelist plugin (Prolaco)

Virtual
Address

Physical
Address

Filename and Location

0xe1c49008 0x036dc008 \Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1c41b60 0x04010b60 \Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

0xe1a39638 0x021eb638 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1a33008

0x01f98008 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT

0xe153ab60 0x06b7db60 \Device\HarddiskVolume1\WINDOWS\system32\config\software
 0xe1542008 0x06c48008 \Device\HarddiskVolume1\WINDOWS\system32\config\default

0xe1537b60 0x06ae4b60 \Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY

0xe1544008

0x06c4b008 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM
 0xe13ae580 0x01bbd580 [no name]
 0xe101b008 0x01867008 \Device\HarddiskVolume1\WINDOWS\system32\config\system

0xe1008978

0x01824978 [no name]

0x8066e904

0x0066e904 [no name]

0xe1e158c0 0x009728c0 \Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1da4008

0x00f6e008 \Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT

2.3.4.2 Printkey plugin

Using the proposed registry keys identified in Annex D, 952 Volatility printkey commands were
issued via a script to query the memory image for information pertaining to the various registry
hives where this malware may have left traces of its activity. All output was captured and stored
in a text file for further analysis.

After running the script, no pertinent information concerning the infection could be found.

2.3.4.3 Userassist plugin

The final registry-based Volatility plugin run against the memory image was userassist. This
plugin has the potential to provide, among other things, registry-based information pertaining to
programs run and files opened by the user.

DRDC Valcartier TM 2013-155 21

Unfortunately, this plugin did not result in any useful information concerning the infection.

2.3.5 Step 5: Strings analysis

Another technique must be used to extract pertinent information from the memory image
concerning the infection. Thus, using the strings command it may be possible to obtain additional
evidence about the malware and its effect on the underlying computer system.

2.3.5.1 Extraction against plugin-based dumped files

This subsection conducts strings-based analysis against only those files successfully obtained
using the memory dumping plugins (procexedump and procmemdump).

2.3.5.1.1 Commands

The following commands were used against the procexedump and procmemdump plugin-dumped
files for PID 1336:

$ strings -e s -t d procexedump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d procexedump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d procexedump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d procexedump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e s -t d procmemdump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d procmemdump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d procmemdump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d procmemdump/executable.1336.exe | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

These commands carryout case-insensitive (-i) searches using grep’s Perl-like (-P) pattern
matching; to remove non-pertinent output keyword filters are used. Output can be tuned where
keyword1, keyword2… keywordn represent the following word-filters:

Filter Set (1):

• 1_doc_RCData_612
• Virus
• Trojan

22 DRDC Valcartier TM 2013-155

• Rootkit
• Worm
• Prolaco
• Shield
• Infected
• Software\\
• Software\\Microsoft
• System\\
• System\\CurrentControlSet
• System\\ControlSet

Consider that word-filters Software\\, System\\ and CurrentVersion\\ (see Filter Set (2) below) are
indicative of registry hives.

2.3.5.1.2 Pertinent strings

Running the aforementioned commands with the above listed keyword filters resulted in the
following pertinent strings, likely applicable to this specific malware:

• SOFTWARE\McAfee\AVEngine
• mcshield
• Software\Microsoft\Windows\CurrentVersion\Run
• SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System
• SOFTWARE\Microsoft\Security Center

2.3.5.1.3 Analysis

Based on the above output, the malware may be attempting to seek out specific anti-virus
products. Thus, the word-filter can be expanded to incorporate additional filters to search for
including:

Filter Set (2):

• Mcafee
• mcshield
• CurrentVersion\\Run
• CurrentVersion\\Policies\\System
• Security Center

2.3.5.2 Extraction against memory image

This subsection conducts strings-based analysis against the entire memory image file,
prolaco.vmem.

DRDC Valcartier TM 2013-155 23

2.3.5.2.1 Commands

Using the aforementioned keywords (see Filter Set (1) and (2)), the following commands were
run against the memory image:

$ strings -e s -t d prolaco.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d prolaco.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d prolaco.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d prolaco.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

2.3.5.2.2 Pertinent strings

Applying Filter Set (1) and (2) to the aforementioned strings commands, the following output has
been manually pruned for pertinence. Thus, it is possible that some items will have been
inadvertently missed. The pertinent output is as follows:

• 1_doc_RCC:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• 1_doc_RCData_612

• \1_doc_RCData_612.exe

• 1_doc_RCData_612.exe

• 1_doc_RCData_612.exe|

• 1_DOC_RCDATA_612.EXE

• 1_doc_RCData_612.exe1_DOC_RCDATA_612.EXEI

• 1_DOC_RCDATA_612.EXE-2A36E0B8.pf

• 1_DOC_RCDATA_612.EXE-2A36E0B8.pf1_DOC_RCDATA_612.EXE-2A36E0B8.PF

• 1_doc_RCData_612.exe3_s

• 1_DOC_RCDATA_612.EXEo

• ALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RCData_612.exe

• bvShieldEnabled

• C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RCDa
ta_612.exe

• "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"

24 DRDC Valcartier TM 2013-155

• "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"‘|€¦]

• "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"‘|€¦]

•]C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• \??\C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• ??\C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Config

• ??\C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Manifest

• Command line: "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"T

• "C:\Program Files\Immunity Inc\Immunity
Debugger\ImmunityDebugger.exe" "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"

• \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• \DEVICE\HARDDISKVOLUME1\DOCUMENTS AND
SETTINGS\ADMINISTRATOR\DESKTOP\1_DOC_RCDATA_612.EXE

• DEVICE\HARDDISKVOLUME1\DOCUMENTS AND
SETTINGS\ADMINISTRATOR\DESKTOP\1_DOC_RCDATA_612.EXE

• \DOCUME~1\ADMINI~1\LOCALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RCData
_612.exe

• ÿÿÿÿ\DOCUME~1\ADMINI~1\LOCALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RC
Data_612.exe

• `\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• \Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe

• Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"

• :\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Config

• \Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Manifest

• File 'C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe'K/

• Immunity Debugger - 1_doc_RCData_612.exe

DRDC Valcartier TM 2013-155 25

• Immunity Debugger - 1_doc_RCData_612.exe - [CPU - main thread,
module 1_doc_RC]

• McAfeeAntiVirus

• McAfeeFirewall

• McAfee Firewall

• McAfee Quick Clean 1.02

• McAfee Software

• McAfee Uninstaller 3.0

• mcshield

• mcshield.exe

• Modules C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exeL'

• OCUME~1\ADMINI~1\LOCALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RCData_6
12.exe

• ocuments and Settings\Administrator\Desktop\1_doc_RCData_612.exe

• Rundll32.exe
C:\PROGRA~1\COMMON~1\System\OLEDB~1\oledb32.dll,OpenDSLFile %1

• RY\MACHINE\SYSTEM\CURRENTCONTROLSET\SERVICES\TSDDD\DEVICE0

• s/ÏÂ¹ôõ÷ôõ÷òóõðóôïòóïòóïòóïòóïòóïòóïòóïòóïALS~1\Temp\VMwareDnD\b
ffef9ba\1_doc_RCData_612.exe

• SHIELD.BPL

• Shielded

• SOFTWARE\McAfee\AVEngine

• Software\McAfee.com\Agent\Apps

• Software\McAfee.com\Agent\Apps\MPF

• Software\McAfee.com\Agent\Apps\VSO

• Software\McAfee.com\Personal Firewall

• Software\McAfee.com\VirusScan Online

• Software\McAfee\McAfee Firewall

• tes\Anti-Virus\Resident

• trator\Desktop\1_doc_RCData_612.exe

• Unshielded

• /Users/mhl/Desktop/MHLFILES/iDefense/Googlebuzz/1_doc_RCData_612
.exe

• VIRUS: kernel32.exe

• VirusProduct

• VirusScanner

26 DRDC Valcartier TM 2013-155

2.3.5.2.3 Analysis

Examining the above output, the overall impression is that this string listing requires additional
context to make sense of certain information. However, what can be inferred is that the malware
appears to perform checks for McAfee-based software security products. Whether the malware
was actually able to disable them will require reverse engineering, an approach not examined
herein. Based on information provided by [5], it is known that registry entry bvShieldEnabled
(found in the above output) corresponds to known worm behaviour with respect to McAfee Anti-
Virus.

Moreover, based on the above output, the malware infection likely relied on configuration and
manifest files, as per the following artifacts obtained from the above strings output (see Section
2.3.5.2.2 for details):

• ??\C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Config

• ??\C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe.Manifest

The malware was most likely introduced to the virtual machine through the VMware host-to-
guest mechanism as per the above-listed strings artifact (see Section 2.3.5.2.2 for details):

\DOCUME~1\ADMINI~1\LOCALS~1\Temp\VMwareDnD\bffef9ba\1_doc_RCData_
612.exe

Finally, the malware appears to have been instantiated using Immunity Debugger the above-listed
strings artifact (see Section 2.3.5.2.2 for details):

"C:\Program Files\Immunity Inc\Immunity
Debugger\ImmunityDebugger.exe" "C:\Documents and
Settings\Administrator\Desktop\1_doc_RCData_612.exe"

2.4 Summary

Although little useful information could be found in the publicly available literature concerning
the Prolaco worm thought to have infected the memory image, through a systematic application
of the proposed and amended methodology (see Section 1.7 for details), it was possible to not
only find and extract the malware but determine that it likely had anti-scanner capabilities.
Because this malware was hidden and not communicating with any remote systems, its detection
and extraction was less straightforward than for the Zeus memory image (see [22] for details).

Moreover, based on the evidence obtained from the application of the aforementioned Volatility
plugins against this memory image, it can be posited that the malware did not complete its
infection of the underlying computer system because it was run from a debugger and had likely
been paused or stopped for further analysis when the memory image was taken.

Based on the output obtained using the mutantscan and handles plugins, the worm makes no
effort to hide itself.

DRDC Valcartier TM 2013-155 27

3 Memory investigation and analysis of SpyEye

3.1 Background

This analysis examines a memory image suspected of harbouring the SpyEye Trojan horse as
based on the methodology put forward in Section 1.7. Much information was found concerning
the technical details of this infection as it is somewhat similar in its scope to the Zeus Trojan
horse. Documents [6][7][8][9][10][11][12][13][14][15][16][17] and [18] provide a wealth of
additional information for analysts of varying skill.

3.2 Preliminary investigative steps

The steps examined in this subsection should be considered as preliminary investigative steps
necessary for examining a potentially infected memory image.

3.2.1 Safeguard the memory image

The memory image spyeye.vmem was set to immutable atop an Ext4-based filesystem. The
command used to perform this, carried out as the root user, was:

 $ sudo chattr +i spyeye.vmem

This results in a memory image that can no longer be modified, even by the root user. This is to
prevent accidental modifications from occurring to this file.

3.2.2 Preliminary anti-virus scanning results

Scanning only the memory image itself with the six scanners outlined in Section 1.6.1, it was
determined that unlike the Zeus infected memory image (see [22] for details) none of them
identified the memory image as infected.

Even though no infection was found, all scanner results were saved for possible future use.

3.2.3 Data carving and file hashing

Photorec succeeded in recovering 1,495 files carved from the SpyEye memory image as per the
recommended Photorec settings put forward in Section 1.6.2. Eight duplicate files were found,
thereby leaving 1,487 unique files recovered. Of those 1,495 recovered files, 929 were identified
as PE-based files. Of those, 678 were identified as Windows 32-bit DLLs, while 251 were
identified as standard Windows 32-bit PEs and device drivers. Finally, of the Windows 32-bit PE-
based files, nine were detected as UPX-based executables.

No 64-bit PE-based files were identified. However, two files were identified as 16-bit MS-DOS
executables for Windows 3.x. This discovery was likely caused by incorrect header detection due
to the imprecise nature of data carving.

28 DRDC Valcartier TM 2013-155

Other file types were detected but were of no immediate use. However, their types were recorded
and saved for possible future use within this analysis.

All recovered files were SHA1-hashed and then validated against NSRL hash-set 2.40 (March
2013). Results were stored for future use. Six SHA1 hashes were confirmed as matching the
NSRL hash-set. Information concerning these matches can be found in Annex C.2.

Finally, CTPH-based hashing (fuzzy hashing) was conducted using the ssdeep tool against the
carved data files and stored for future use.

3.2.4 Anti-virus scanning and file hashing results for carved data files

Using the six scanners and combining their output through UNIX command line processing tools
(e.g. cat, sort, find, tr, strings, awk, grep, uniq, etc.), five matches were established. A match
occurs when two or more scanners detect a file as infected or possibly malicious. Of the six
scanners, only Avast was incapable of detecting any of the files as potentially malicious.

All six scanners were capable of detecting one or more potential infections. However, none of the
potentially infected files were detected as the SpyEye Trojan horse or anything else remotely
resembling the name of this infection. The following table provides a detailed correspondence of
the scanner-based matches:

Table 15: Matching of potentially infected carved data file vs. scanner (SpyEye).

Potentially infected file Detecting scanner

 f0263584.exe AVG

 ClamAV

 f0263296.dll AVG

 ClamAV

 f0305128.dll AVG

 ClamAV

 f0630512.exe BitDefender

 ClamAV

 f0952760.dll AVG

 ClamAV

Specific logs for each scanner can be found in Annex A.2.

DRDC Valcartier TM 2013-155 29

3.3 Volatility analysis

In order to investigate this specific memory image the use and output of various Volatility plugins
of assistance to this particular analysis are examined.

3.3.1 Step 1: Determine background information

This step examines the Volatility plugins used to provide background information and context to
the memory image.

3.3.1.1 Imageinfo plugin

This Volatility plugin is used to provide basic contextual information about a suspect memory
image.

Output from the plugin, using command “volatility imageinfo -f spyeye.vmem,” is as follows:

Determining Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86
(Instantiated with WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace
(/home/richard/work/Work
Reports/Studies/Volatility_Win_Mem_Analysis/Report2_Spyeye/spyeye
.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80545b60
 Number of Processors : 1
 Image Type (Service Pack) : 3
 KPCR for CPU 0 : 0xffdff000
 KUSER_SHARED_DATA : 0xffdf0000
 Image date and time : 2011-01-06 14:50:19 UTC+0000
 Image local date and time : 2011-01-06 09:50:19 -0500

This memory image appears to be running atop a 32-bit Windows XP computer system with
Service Pack 3. It is equipped with one PAE-based processor and the memory image is 512 MiB
in size (based on the memory image’s size determined using ls -l). The memory image was
acquired January 6, 2011 at 09:50:19 EST.

3.3.1.2 Pslist plugin

The next step is to determine which processes are running within the memory image in order to
determine if anything suspicious is immediately visible. The pslist plugin provides a detailed
process listing and makes use of virtual memory addresses.

Consider the following output from this plugin, using command “volatility -f spyeye.vmem pslist”:

30 DRDC Valcartier TM 2013-155

Table 16: Volatility output for the Pslist plugin sorted by PID (SpyEye).

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x825c8830 System 4 0 58 387 ------ 0

 0x8236d7a0 wuauclt.exe 536 1068 3 107 0 0 2010-11-11 22:03:33

0x823fe020 smss.exe 572 4 3 19 ------ 0 2010-11-11 22:02:08

0x82503220 csrss.exe 636 572 13 399 0 0 2010-11-11 22:02:13

0x81f4c550 winlogon.exe 660 572 21 596 0 0 2010-11-11 22:02:14

0x8207d5f0 services.exe 704 660 17 285 0 0 2010-11-11 22:02:15

0x824264c0 lsass.exe 716 660 20 356 0 0 2010-11-11 22:02:15

0x8230c5f8 vmacthlp.exe 872 704 2 26 0 0 2010-11-11 22:02:16

0x8226cda0 svchost.exe 904 704 16 191 0 0 2010-11-11 22:02:16

0x823f2020 svchost.exe 972 704 9 264 0 0 2010-11-11 22:02:17

0x823e32f8 explorer.exe 1008 680 15 468 0 0 2010-11-11 22:02:55

0x824578b0 imapi.exe 1040 704 5 114 0 0 2010-11-11 22:03:54

0x822a0758 svchost.exe 1068 704 58 1256 0 0 2010-11-11 22:02:17

0x81f4b020 svchost.exe 1108 704 7 82 0 0 2010-11-11 22:02:17

0x82406da0 svchost.exe 1232 704 13 169 0 0 2010-11-11 22:02:18

0x81ec2020 TSVNCache.exe 1252 1008 9 58 0 0 2010-11-11 22:02:58

0x82436a48 svchost.exe 1456 704 12 121 0 0 2010-11-11 22:02:19

0x81ebd300 VMwareTray.exe 1484 1008 2 51 0 0 2010-11-11 22:03:00

0x82067858 svchost.exe 1540 704 6 95 0 0 2010-11-11 22:02:26

0x82159958 VMwareUser.exe 1588 1008 7 230 0 0 2010-11-11 22:03:00

0x82072660 jqs.exe 1612 704 6 149 0 0 2010-11-11 22:02:27

0x8214ba18 jusched.exe 1672 1008 2 97 0 0 2010-11-11 22:03:00

0x82284b80 vmtoolsd.exe 1816 704 6 268 0 0 2010-11-11 22:02:30

0x822e69f8 VMUpgradeHelper 1872 704 4 100 0 0 2010-11-11 22:02:30

0x82458020 alg.exe 2108 704 7 107 0 0 2010-11-11 22:03:54

0x82226b48 cleansweep.exe 2268 1008 0 ------- 0 0 2011-01-06 14:36:52 2011-01-06 14:36:52

0x820bd760 gmer.exe 2728 1008 2 33 0 0 2011-01-06 14:37:41

0x82389020 wscntfy.exe 2772 1068 2 29 0 0 2010-11-11 22:03:56

0x81f7a708 WPFFontCache_v0 3084 704 7 70 0 0 2010-11-11 22:05:04

0x81f5e020 jucheck.exe 3892 1672 3 105 0 0 2010-11-11 22:08:01

Examining the process names in the above table, several stand out. Among them are
TSVNCache.exe, imapi.exe, WPFFontCache_v0, cleansweep.exe and gmer.exe. However, process
cleansweep.exe stands out from the others (highlighted in red above). Internet searches for
filenames TSVNCache.exe reveals it is the SVN cache process, while imapi.exe is an integral part
of the Windows operating system and WPFFontCache_v0 is the Windows WPF Font cache
service. Finally, gmer.exe is a free rootkit and hidden application detection program while
cleansweep.exe is related to a legacy Windows application used to clean Windows systems of
accumulated debris.

DRDC Valcartier TM 2013-155 31

Four of these five programs are considered “normal” whereas the existence of cleansweep.exe is
altogether abnormal. A closer inspection is warranted concerning this process because it should
not be found on this system.

3.3.1.3 Psscan plugin

The psscan plugin uses physical memory addresses and scans memory images for _EPROCESS
pool allocations, in contrast to the pslist plugin that uses virtual memory addresses and scans for
EPROCESS lists. The benefit of using this plugin is that sometimes it can succeed in listing
processes that cannot be found using any of the other process listing plugins (i.e., pslist and
pstree).

Consider the following output from this plugin, using command “volatility -f spyeye.vmem
psscan”:

Table 17: Volatility output for the Psscan plugin sorted by PID (SpyEye).

Offset(P) Name PID PPID PDB Time created Time exited

0x025c8830 System 4 0 0x00319000

0x0236d7a0 wuauclt.exe 536 1068 0x0a9402c0 2010-11-11 22:03:33

0x023fe020 smss.exe 572 4 0x0a940020 2010-11-11 22:02:08

0x02503220 csrss.exe 636 572 0x0a940040 2010-11-11 22:02:13

0x01f4c550 winlogon.exe 660 572 0x0a940060 2010-11-11 22:02:14

0x0207d5f0 services.exe 704 660 0x0a940080 2010-11-11 22:02:15

0x024264c0 lsass.exe 716 660 0x0a9400a0 2010-11-11 22:02:15

0x0230c5f8 vmacthlp.exe 872 704 0x0a9400c0 2010-11-11 22:02:16

0x0226cda0 svchost.exe 904 704 0x0a9400e0 2010-11-11 22:02:16

0x023f2020 svchost.exe 972 704 0x0a940100 2010-11-11 22:02:17

0x023e32f8 explorer.exe 1008 680 0x0a940320 2010-11-11 22:02:55

0x024578b0 imapi.exe 1040 704 0x0a940220 2010-11-11 22:03:54

0x022a0758 svchost.exe 1068 704 0x0a940120 2010-11-11 22:02:17

0x01f4b020 svchost.exe 1108 704 0x0a940140 2010-11-11 22:02:17

0x02406da0 svchost.exe 1232 704 0x0a940160 2010-11-11 22:02:18

0x01ec2020 TSVNCache.exe 1252 1008 0x0a940340 2010-11-11 22:02:58

0x02436a48 spoolsv.exe 1456 704 0x0a9401a0 2010-11-11 22:02:19

0x01ebd300 VMwareTray.exe 1484 1008 0x0a940180 2010-11-11 22:03:00

0x02067858 svchost.exe 1540 704 0x0a9401c0 2010-11-11 22:02:26

0x02159958 VMwareUser.exe 1588 1008 0x0a9402e0 2010-11-11 22:03:00

0x02072660 jqs.exe 1612 704 0x0a940200 2010-11-11 22:02:27

0x0214ba18 jusched.exe 1672 1008 0x0a940300 2010-11-11 22:03:00

0x02284b80 vmtoolsd.exe 1816 704 0x0a940240 2010-11-11 22:02:30

0x022e69f8 VMUpgradeHelper 1872 704 0x0a940260 2010-11-11 22:02:30

0x02458020 alg.exe 2108 704 0x0a940360 2010-11-11 22:03:54

0x02226b48 cleansweep.exe 2268 1008 0x0a940460 2011-01-06 14:36:52 2011-01-06 14:36:52

32 DRDC Valcartier TM 2013-155

Offset(P) Name PID PPID PDB Time created Time exited

0x020bd760 gmer.exe 2728 1008 0x0a9403a0 2011-01-06 14:37:41

0x02389020 wscntfy.exe 2772 1068 0x0a940380 2010-11-11 22:03:56

0x01ed9b50 wmiprvse.exe 2912 888 0x0a3004c0 2010-11-11 21:57:43

0x01f7a708 WPFFontCache_v0 3084 704 0x0a940400 2010-11-11 22:05:04

0x01f5e020 jucheck.exe 3892 1672 0x0a9402a0 2010-11-11 22:08:01

The output from the psscan plugin appears very similar to the output of the pslist plugin. The
suspicious process cleansweep.exe has been highlighted in red. At first glance differentiating
between this output and that of pslist is not be apparent.

3.3.1.4 Differentiating the output between the pslist and psscan plugins

Highlighting the differences between the output from the pslist and psscan plugins may not be
obvious at first glance. For this task, shell-based text processing is of significant use. By using the
following command, it is readily possible to differentiate between the two plugins’ output:

$ cat pslist.txt psscan.txt | awk '{print $2"\t"$3}' | sort |
uniq –c | grep -v “ 2”

This command results in the following output:

1 -------------------- ------
1 ---------------- ------
1 wmiprsve.exe 2912

Thus, by using these commands, it was determined that the difference between these two plugins
(pslist and psscan) is process wmiprvse.exe, a normal Windows process that is often not visible
using standard process listings (i.e. pslist).

3.3.1.5 Psxview plugin

Volatility provides an additional capability for detecting hidden running processes. The psxview
plugin provides a detailed listing of processes running in a memory image by using five specific
detection methods. These include pslist, psscan, thrdproc, pspcdid and csrss.

Consider the following output from this plugin, using command “volatility -f spyeye.vmem
psxview”:

Table 18: Volatility output for the Psxview plugin sorted by PID (SpyEye).

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x025c8830 System 4 True True True True False

0x0236d7a0 wuauclt.exe 536 True True True True True

0x023fe020 smss.exe 572 True True True True False

0x02503220 csrss.exe 636 True True True True False

DRDC Valcartier TM 2013-155 33

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x01f4c550 winlogon.exe 660 True True True True True

0x0207d5f0 services.exe 704 True True True True True

0x024264c0 lsass.exe 716 True True True True True

0x0230c5f8 vmacthlp.exe 872 True True True True True

0x0226cda0 svchost.exe 904 True True True True True

0x023f2020 svchost.exe 972 True True True True True

0x023e32f8 explorer.exe 1008 True True True True True

0x024578b0 imapi.exe 1040 True True True True True

0x022a0758 svchost.exe 1068 True True True True True

0x01f4b020 svchost.exe 1108 True True True True True

0x02406da0 svchost.exe 1232 True True True True True

0x01ec2020 TSVNCache.exe 1252 True True True True True

0x02436a48 spoolsv.exe 1456 True True True True True

0x01ebd300 VMwareTray.exe 1484 True True True True True

0x02067858 svchost.exe 1540 True True True True True

0x02159958 VMwareUser.exe 1588 True True True True True

0x02072660 jqs.exe 1612 True True True True True

0x0214ba18 jusched.exe 1672 True True True True True

0x02284b80 vmtoolsd.exe 1816 True True True True True

0x022e69f8 VMUpgradeHelper 1872 True True True True True

0x02458020 alg.exe 2108 True True True True True

0x02226b48 cleansweep.exe 2268 True True False True False

0x020bd760 gmer.exe 2728 True True True True True

0x02389020 wscntfy.exe 2772 True True True True True

0x01ed9b50 wmiprvse.exe 2912 False True False False False

0x01f7a708 WPFFontCache_v0 3084 True True True True True

0x01f5e020 jucheck.exe 3892 True True True True True

Note that some processes listed as hidden using the csrss method are not always hidden. For
Windows 7 and Vista systems, the list of internal processes is not available and in certain cases
where Windows XP is concerned, required memory pages may have been swapped out, thereby
affecting the outcome. [19]

However, what is not normal is that process wmiprvse.exe (PID 2912) is hidden from all psxview-
based memory detection methods except for psscan. This may be indicative of a process having

34 DRDC Valcartier TM 2013-155

been previously terminated but the system process table does not correctly reflect the fact. This
must, however, be confirmed. Finally, based on its name, it is likely a legitimate Windows system
process.

Interestingly, process cleansweep.exe (PID 2268) is only hidden from thrdproc and csrss. Since
this process makes no effort to hide itself from observation it is likely that this process in of itself
is not itself infected meaning that injected code may be lurking somewhere in this memory image.
It is expected that an advanced Trojan like SpyEye would make efforts to conceal itself.

3.3.1.6 Correlating PIDs and PPIDs***

Examining the output established thus far based on the pslist, psscan and psxview plugins, the
following information can be established with respect to process instantiation.

Table 19: Process instantiation for suspicious processes (SpyEye)

PPID name PPID PID PID name

 N/A 888 2912 wmiprvse.exe

 N/A 680 1008 explorer.exe

explorer.exe 1008 2268 cleansweep.exe

Thus, it can be inferred that from process explorer.exe (PID 1008), process cleansweep.exe (PID
2268) was instantiated. It is not known what instantiated PPID 888.

The next step is to determine if other plugins can reveal evidence of infection.

3.3.2 Step 2: Assess other sources of evidence

This step examines various Volatility plugins that can be used to establish additional evidence
concerning the memory image.

3.3.2.1 Cmdscan and consoles plugins

The plugins cmdscan and consoles plugin may reveal more information about commands typed
into a command shell. Querying a memory image using these two plugins is carried out using the
following commands:

$ volatility -f spyeye.vmem cmdscan

$ volatility -f spyeye.vmem consoles

These cmdscan plugin revealed absolutely no information whatsoever while the consoles plugin
provided output concerning two console-based processes that are unrelated to this investigation.

DRDC Valcartier TM 2013-155 35

3.3.2.2 Connscan plugin

The first network-based Volatility plugin that should be used is connscan. It is used to verify the
existence of ongoing network connections and it scans a memory image for current or recently
terminated connections.

Consider the following output from this plugin, using command “volatility -f spyeye.vmem
connscan”:

Table 20: Volatility output for the Connscan plugin (SpyEye)

Offset(P) Local Address Remote Address PID
0x01eacc00 192.168.16.129:1039 65.55.185.26:443

1068

 0x01fd3170 192.168.16.129:1040 207.46.21.58:80 1068

Based on this information, PID 1068 (svchost.exe) is communicating with two remote systems,
65.55.185.26 and 207.46.21.58. A Whois search for these two systems confirms that they both
belong to Microsoft. However, DNS name resolution is not possible for these systems at this
time.

Thus, whatever network traffic was exchanged between these systems does not appear to be
related to the infection. It could be a Windows update, although this is only conjecture.

3.3.2.3 Connections plugin

The connections plugin can be used to determine information concerning recently terminated and
ongoing communications. It therefore makes sense to use this plugin to query a memory image
for additional network-based information.

However, using command “volatility -f spyeye.vmem connections” yielded no output whatsoever.

3.3.2.4 Sockets and sockscan plugins

Volatility offers two additional network-based plugins, sockets and sockscan. The sockets plugin
lists open sockets that may provide additional information about covert network channels, while
the sockscan plugin scans a suspect memory image for all TCP sockets. Generally, the output is
the same for both plugins with the exception of memory addresses, where the sockets plugin uses
virtual memory addresses while the sockscan plugin uses physical memory addressing.

Thus, using the following commands it will be possible to determine which processes have open
network sockets ready for communications:

$ volatility -f spyeye.vmem sockets > sockets.txt

$ volatility -f spyeye.vmem sockscan > sockscan.txt

36 DRDC Valcartier TM 2013-155

$ cat sockets.txt sockscan.txt | sort | awk ‘{$1=””;print}’
| uniq > sockets_sockscan.txt

The output of file sockets_sockscan.txt appears as shown in the following table:

Table 21: Volatility Sockets and Sockscan plugin output sorted by PID (SpyEye)

PID Port Proto Protocol Address Create Time
4 445 17 UDP 0.0.0.0 2010-11-11 22:02:08
4 445 6 TCP 0.0.0.0 2010-11-11 22:02:08
4 445 17 UDP 0.0.0.0 2010-11-11 22:02:08
4 445 6 TCP 0.0.0.0 2010-11-11 22:02:08

716 500 17 UDP 0.0.0.0 2010-11-11 22:02:27
716 4500 17 UDP 0.0.0.0 2010-11-11 22:02:27
716 0 255 Reserved 0.0.0.0 2010-11-11 22:02:27
716 500 17 UDP 0.0.0.0 2010-11-11 22:02:27
716 4500 17 UDP 0.0.0.0 2010-11-11 22:02:27
716 0 255 Reserved 0.0.0.0 2010-11-11 22:02:27
972 135 6 TCP 0.0.0.0 2010-11-1122:02:17
972 135 6 TCP 0.0.0.0 2010-11-11 22:02:17

1068 123 17 UDP 127.0.0.1 2011-01-06 14:36:59
1068 123 17 UDP 127.0.0.1 2011-01-06 14:36:59
1232 1900 17 UDP 127.0.0.1 2011-01-06 14:36:59
1232 1900 17 UDP 127.0.0.1 2011-01-06 14:36:59
1612 5152 6 TCP 127.0.0.1 2010-11-11 22:02:27
1612 5152 6 TCP 127.0.0.1 2010-11-11 22:02:27
2108 1025 6 TCP 127.0.0.1 2010-11-11 22:03:54
2108 1025 6 TCP 127.0.0.1 2010-11-11 22:03:54
3892 1026 6 TCP 0.0.0.0 2010-11-11 22:08:01
3892 1026 6 TCP 0.0.0.0 2010-11-11 22:08:01

Looking at this data, based on the list of open sockets, none of the listed communications
corresponds to the already established PIDs of interest (2268 and 2912). Examining the list of
ports, it is suspicious that PID 1068 (explorer.exe) has an open socket for port 123 (NTP). The
valid use of this port is not typically characteristic of explorer.exe. Thus, this behaviour is highly
suspicious.

DRDC Valcartier TM 2013-155 37

3.3.2.5 Filescan plugin

If an infection is active and does not show itself via the network then the filescan plugin may be
of assistance as the plugin may be able to find open file handles in memory. Unfortunately, no
direct link to these handles is possible as the physical disk image is not available for analysis.
This plugin makes use of physical address offsets.

The preferred method for detecting indicators of compromise is twofold. First, using keywords
(e.g. SpyEye, infection, rootkit, worm, etc.) it may be possible to find the infection, as malware
programmers do not often use innocuous looking filenames. Of course, this is at best a hit and
miss approach. Secondly, it can be attempted to detect suspicious files based on their locations.
However, this requires that the investigator has a very good working knowledge of the underlying
operating system as just looking at filenames3 and locations will not produce meaningful results,
unless something really sticks out.

Fortunately, as with the Zeus infection ([22]), much useful information abounds for the SpyEye
Trojan as listed in Section 3.1. Thus, sufficient potential keywords can be found.

Running command “volatility -f spyeye.vmem filescan | grep -i -P
‘(botnet|cleansweep|spyeye|virus|Trojan|rootkit|worm|jusched|config|php|recycle)’ ” results in
the following output pertinent output, after manual pruning:

0x0203ceb8 1 0 R--r-d
\Device\HarddiskVolume1\cleansweep.exe\cleansweep.exe

0x02072f10 1 0 RW-rw-
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cf.bin

0x020747a8 1 0 R--r--
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye_sample.piz

0x021292e8 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\intro-
spyeye.pdf

0x02265ad8 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.idb

0x0229fd38 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\edc7c152759ba0
482bd39db0ea2c4319

3 Recall that a reliable source of filenames is the NSRL hash-set. It can be broken down by software
product and operating system.

38 DRDC Valcartier TM 2013-155

0x02306b18 1 0 RW-rw-
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\config.bin.zip

0x02307148 1 0 -W-rwd
\Device\HarddiskVolume1\cleansweep.exe\config.bin

0x02362650 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.exe

0x02401f90 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\SymantecViralP
ortalDownloadReport.txt

0x02524250 1 0 R--rwd
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\2b8a408b56eaf3
ce0198c9d1d8a75ec0

Based on this output and established documentation [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and
18], a convincing argument can be made that PID 2268 (cleansweep.exe) is linked to the SpyEye
Trojan horse. Furthermore, it appears that the various SpyEye configuration files have been
found.

Finally, no file handles were found for process PID 2912 (wmiprvse.exe) indicating that it is
likely this process previously terminated and that the system process table was not correctly
updated.

3.3.2.6 Mutantscan plugin

The Volatility mutantscan can sometimes reveal interesting information about Windows thread-
based mutexes in memory. It makes use of physical offset addressing.

Using command “volatility -f spyeye.vmem mutantscan” yielded the following pertinent
information after pruning the output (as the output is several pages long):

0x02039b78 2 1 1 0x00000000
__CLEANSWEEP__

The above output indicates that a suspicious mutex for was found. The mutex was most likely
put in place by suspicious process cleansweep.exe.

3.3.2.7 Handles plugin

The Volatility handles plugin can reveal interesting information about processes and resources
attached or associated to them that might not be found using previously examined plugins. It
makes use of virtual offset addressing.

DRDC Valcartier TM 2013-155 39

Using command “volatility -f spyeye.vmem handles,” the following pruned output is of interest to
the investigation and is as follows:

0x82039b78 1008 0x5b4 0x1f0001 Mutant
__CLEANSWEEP__

0x82226b48 1008 0x6d0 0x1f0fff Process
cleansweep.exe(2268)

0x82522470 1008 0x608 0x1f03ff Thread
TID 2216 PID 2268

From this output, it can be determined that there is a link between PID 1008 (explorer.exe) and
2268 (cleansweep.exe). Moreover, a mutex handle was discovered for PID 1008 with value of
__CLEANSWEEP__ that is highly suspicious, as this should never be found in process
explorer.exe. Finally, PID 2268 is associated with TID 2216.

Note that the mutex has virtual memory address 0x82039b78 while the mutex uncovered by the
mutantscan plugin, listed using a physical memory address, has an address of 0x02039b78. These
are in fact the very same mutex.

3.3.2.8 Threads plugin

The final Volatility plugin to be used in this step is the threads plugin. Armed with the
information provided by the handles plugin, it is worthwhile investigating the information
uncovered about TID 2216. Using command “volatility -f spyeye.vmem threads -p 2268” yielded
the following information:

ETHREAD: 0x82522470 Pid: 2268 Tid: 2216
Tags:
Created: 2011-01-06 14:36:52
Exited: 2011-01-06 14:36:52
Owning Process: cleansweep.exe
Attached Process: cleansweep.exe
State: Terminated
BasePriority: 0x8
Priority: 0x10
TEB: 0x00000000
StartAddress: 0x7c810705 UNKNOWN
ServiceTable: 0x80552fe0
 [0] 0x80501bbc
 [1] 0xbf99b400
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags: PS_CROSS_THREAD_FLAGS_TERMINATED

Thus, suspicious thread TID 2216 is without doubt a subset of process PID 2268.

40 DRDC Valcartier TM 2013-155

3.3.3 Step 3: Dump and assess suspicious processes

The evidence established thus far indicates that two processes are suspicious, PIDs 2268 and 2912
(cleansweep.exe and wmiprvse.exe). However, PID 2912 is likely the remains of a terminated
process where the system process table was incorrectly updated. Nevertheless, both processes
will be evaluated in this step for potential infection.

3.3.3.1 Create data directories

Create directories malfind, memdump, procexedump and procmemdump for storing memory
samples dumped from the memory image using corresponding Volatility plugins. This is done
using the following commands:

 $ mkdir malfind

 $ mkdir memdump

 $ mkdir procexedump

 $ mkdir procmemdump

3.3.3.2 Malfind plugin

3.3.3.2.1 Running the plugin

Volatility’s malfind plugin was specifically designed to search for malware hidden through code
injection. If memory address offsets are specified then they must be physical memory address
offsets.

Using the following commands it was attempted to find and dump injected code associated with
cleansweep.exe (PID 2268) and wmiprvse.exe (PID 2912):

$ volatility -f spyeye.vmem malfind -p 2268 -o 0x02226b48
--dump-dir=malfind

$ volatility -f spyeye.vmem malfind -p 2912 -o 0x01ed9b50
--dump-dir=malfind

These two commands resulted in no output thereby confirming that processes cleansweep.exe and
wmiprvse.exe were themselves not injected with malicious code.

Using the plugin at large against the infected memory image with command “volatility -f
spyeye.vmem malfind” resulted in the dumping of 36 memory samples. A great deal of output
was generated by the plugin.

Detailed analyses of the findings are carried out in subsequent sections.

DRDC Valcartier TM 2013-155 41

3.3.3.2.2 Scanning the dumped memory samples

All 36 samples were then scanned using the six aforementioned scanners resulting in the
following dumped memory samples having been determined as potentially malicious or infected:

Table 22: Scanner infection detection for dumped memory samples from the Malfind plugin
(SpyEye)

Scanner Filename Infection Identification

 Avast process.0x823e32f8.0xea00000.dmp Win32:Malware-gen

 AVG process.0x823e32f8.0xea00000.dmp Trojan horse Generic28.BLVW

 BitDefender N/A Nothing found

 ClamAV N/A Nothing found

 FRISK N/A Nothing found

 McAfee process.0x81ebd300.0xea50000.dmp
process.0x81ec2020.0xea50000.dmp
process.0x81f4b020.0xea50000.dmp
process.0x81f4c550.0xea50000.dmp
process.0x81f5e020.0xea50000.dmp
process.0x82067858.0xea50000.dmp
process.0x82072660.0xea50000.dmp
process.0x8207d5f0.0xea50000.dmp
process.0x8214ba18.0xea50000.dmp
process.0x82159958.0xea50000.dmp
process.0x8226cda0.0xea50000.dmp
process.0x82284b80.0xea50000.dmp
process.0x822a0758.0xea50000.dmp
process.0x822e69f8.0xea50000.dmp
process.0x823e32f8.0xea50000.dmp
process.0x823e32f8.0xeab0000.dmp
process.0x823f2020.0xea50000.dmp
process.0x82406da0.0xea50000.dmp
process.0x824264c0.0xea50000.dmp
process.0x82436a48.0xea50000.dmp
process.0x82458020.0xea50000.dmp

Generic.dx!D2309E0CF132 trojan
 Generic.dx!2C068D497643 trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!DF17D637CA65 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!2C068D497643 trojan
RDN/Generic.dx!ccs trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!2C068D497643 trojan
Generic.dx!2E94730C0F5D trojan
Generic.dx!B6ED55D2C36B trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!D2309E0CF132 trojan
Generic.dx!D2309E0CF132 trojan

Based on these results, the reader must consider that the results offered by McAfee are likely false
positives as none of the other five scanners picked up on these dumped files. However, both

42 DRDC Valcartier TM 2013-155

AVG and Avast detected dumped file process.0x823e32f8.0xea00000.dmp as infected. Looking
more closely at this file using the Linux file command revealed that the file was a UPX-based
executable. However, examining it in a hex editor quickly exposed it is as the
Trojan horse of interest based on specific strings found therein:

• *Dropper*!main : CreateMutex->ERROR_ALREADY_EXISTS

• *Dropper* : BOT_VERSION = %d, PID = %d, szModuleFileName =
"%s"

Moreover, the executable was not actually UPX-based but instead merely had UPX headers
occupying the first several kilobytes of the dumped memory sample. This same analytical
process was applied to all the executables detected by McAfee as infected but they were all found
to be innocuous.

3.3.3.2.3 SHA1 and fuzzy hashes

All 36 dumped files were hashed using the sha1sum command to generate their SHA1 signatures.
Based on these hashes, it was determined that only 15 unique signatures existed indicating that
the remaining memory samples were duplicates. Specifically, the unique hash signatures, sorted
alphanumerically are:

0a32ad8919f968283fe100fa1c13f830095c673d
20809106fd5d6dcf512967cb2ee3444e26a77719
3870c69b74fca8eed2cdb5e91b6a02b9b96850ac
5f56930b5a5d1e813121a8f037d2cdfa7b639433
6899aefcec4330f28e6908f85dcbe1db39568ef7
7c0af938ac30ac6ba3e5860165c221c3ac899cab
86a00f1b6f6028174c67d8752bf9056f51c1e7f8
8a6e4adc3ecc502dea4b567b81f8c0194af17a37
a516cd767985107043e88217a536b745b00ef67a
a73d4ec7ef7c287cb4e358857dc0600a6cbd6d0d
a9be8e7823581cbf75f921a8076051ce135a2c9a
b580eac5ae22126dd4cfdb90246903a2394e31f2
d276dfe740acf3582332bb34456b98dd76074872
e02f2f4d613cac595db604940b5cea03dbb64d4e
efe49e97081056804f46770960505f46cc90f356

A complete SHA1-filename listing is available in the following table:

DRDC Valcartier TM 2013-155 43

Table 23: SHA1 vs. filename for Malfind dumped memory samples (SpyEye)

SHA1 Hash Filename

0a32ad8919f968283fe100fa1c13f830095c673d process.0x81f7a708.0xea50000.dmp4

0a32ad8919f968283fe100fa1c13f830095c673d process.0x8230c5f8.0xea50000.dmp

0a32ad8919f968283fe100fa1c13f830095c673d process.0x82389020.0xea50000.dmp

0a32ad8919f968283fe100fa1c13f830095c673d process.0x824578b0.0xea50000.dmp

20809106fd5d6dcf512967cb2ee3444e26a77719 process.0x823e32f8.0x26b0000.dmp

3870c69b74fca8eed2cdb5e91b6a02b9b96850ac process.0x820bd760.0xeab0000.dmp

5f56930b5a5d1e813121a8f037d2cdfa7b639433 process.0x823e32f8.0xea00000.dmp

6899aefcec4330f28e6908f85dcbe1db39568ef7 process.0x8236d7a0.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x81ec2020.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x81f5e020.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x82067858.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x8214ba18.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x82159958.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x82284b80.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x822a0758.0xea50000.dmp

7c0af938ac30ac6ba3e5860165c221c3ac899cab process.0x822e69f8.0xea50000.dmp

86a00f1b6f6028174c67d8752bf9056f51c1e7f8 process.0x820bd760.0x13d0000.dmp

86a00f1b6f6028174c67d8752bf9056f51c1e7f8 process.0x820bd760.0x15d0000.dmp

86a00f1b6f6028174c67d8752bf9056f51c1e7f8 process.0x820bd760.0x19d0000.dmp

86a00f1b6f6028174c67d8752bf9056f51c1e7f8 process.0x820bd760.0x1bd0000.dmp

8a6e4adc3ecc502dea4b567b81f8c0194af17a37 process.0x82503220.0x7f6f0000.dmp

a516cd767985107043e88217a536b745b00ef67a process.0x82072660.0xea50000.dmp

a73d4ec7ef7c287cb4e358857dc0600a6cbd6d0d process.0x823e32f8.0xea50000.dmp

a9be8e7823581cbf75f921a8076051ce135a2c9a process.0x81f4c550.0xea50000.dmp

b580eac5ae22126dd4cfdb90246903a2394e31f2 process.0x820bd760.0xd20000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x81ebd300.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x81f4b020.0xea50000.dmp

4 Consider that filename process.0x81f7a708.0xea50000.dmp denotes that the process dumped was located
within a process with a virtual memory address of 0x81f7a708 and was found at an address of 0xea50000
therein.

44 DRDC Valcartier TM 2013-155

SHA1 Hash Filename

d276dfe740acf3582332bb34456b98dd76074872 process.0x8207d5f0.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x8226cda0.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x823f2020.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x82406da0.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x824264c0.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x82436a48.0xea50000.dmp

d276dfe740acf3582332bb34456b98dd76074872 process.0x82458020.0xea50000.dmp

e02f2f4d613cac595db604940b5cea03dbb64d4e process.0x81f5e020.0xeab0000.dmp

efe49e97081056804f46770960505f46cc90f356 process.0x823e32f8.0xeab0000.dmp

Dumped memory sample file 0x823e32f8.0xea00000.dmp confirmed with malicious code has
been highlighted in red in the above table.

A full listing of fuzzy hashes obtained against the 36 dumped memory samples can be found in
Annex E.

Comparing the 15 unique SHA1 hashes against the NSRL hash-set found no matches.
Furthermore, comparing these hashes against the SHA1 hashes of the carved data files also found
no matches.

Comparing the fuzzy hashes of the malfind-dumped memory samples against dumped file
process.0x823e32f8.0xea00000.dmp (designated as infected by both AVG and Avast) indicated
no matches, not even partially. When comparing the fuzzy hashes of the malfind-dumped
memory samples against the fuzzy hashes of the carved data files, one partial match was obtained,
specifically a 41% match between malfind-dumped file process.0x820bd760.0xd20000.dmp and
carved data file f0306064.dll.

Carved data file f0306064.dll was heuristically detected as malicious by F-Prot. The specific
scanner log can be found in Annex A.2.5. However, a vigilant strings analysis revealed that
f0306064.fll and process.0x820bd760.0xd20000.dmp were innocuous and of no further concern.

3.3.3.2.4 Explorer.exe malfind output

Based on the previous scanner results, it can be established that file
process.0x823e32f8.0xea00000.dmp (see Table 16) is indicative of explorer.exe (PID 1008) as
proposed in Section 3.3.3.2.2. Consider that this process had virtual memory address 0x823e32f8
and that sub address 0xea00000 corresponds to the memory address of the malicious injected
code within explorer.exe’s memory space.

The malfind output specific to memory sample process.0x823e32f8.0xea00000.dmp was as
follows:

DRDC Valcartier TM 2013-155 45

Process: explorer.exe Pid: 1008 Address: 0xea00000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 43, MemCommit: 1, PrivateMemory: 1,
Protection: 6

0x0ea00000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00
MZ..............
0x0ea00010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
........@.......
0x0ea00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
0x0ea00030 00 00 00 00 00 00 00 00 00 00 00 00 f8 00 00 00
................

0xea00000 4d DEC EBP
0xea00001 5a POP EDX
0xea00002 90 NOP
0xea00003 0003 ADD [EBX], AL
0xea00005 0000 ADD [EAX], AL
0xea00007 000400 ADD [EAX+EAX], AL
0xea0000a 0000 ADD [EAX], AL
0xea0000c ff DB 0xff
0xea0000d ff00 INC DWORD [EAX]
0xea0000f 00b800000000 ADD [EAX+0x0], BH
0xea00015 0000 ADD [EAX], AL
0xea00017 004000 ADD [EAX+0x0], AL
0xea0001a 0000 ADD [EAX], AL
0xea0001c 0000 ADD [EAX], AL
0xea0001e 0000 ADD [EAX], AL
0xea00020 0000 ADD [EAX], AL
0xea00022 0000 ADD [EAX], AL
0xea00024 0000 ADD [EAX], AL
0xea00026 0000 ADD [EAX], AL
0xea00028 0000 ADD [EAX], AL
0xea0002a 0000 ADD [EAX], AL
0xea0002c 0000 ADD [EAX], AL
0xea0002e 0000 ADD [EAX], AL
0xea00030 0000 ADD [EAX], AL
0xea00032 0000 ADD [EAX], AL
0xea00034 0000 ADD [EAX], AL
0xea00036 0000 ADD [EAX], AL
0xea00038 0000 ADD [EAX], AL
0xea0003a 0000 ADD [EAX], AL
0xea0003c f8 CLC
0xea0003d 0000 ADD [EAX], AL
0xea0003f 00 DB 0x0

3.3.3.2.5 Summary

Running the malfind plugin, it was not expected that it would have determined that 36 processes
(and threads) had potentially injected code in them. Thus, the only way to determine which were
of interest was to scan them in the hopes of detecting possibly malicious or infected code and also
establish similarities between files based on their SHA1 and fuzzy hashes.

46 DRDC Valcartier TM 2013-155

Thus far, it has been established that process explorer.exe was injected with malicious code. As
for cleansweep.exe and wmiprvse.exe, though nothing has been found thus far, they cannot yet be
excluded from further analysis.

3.3.3.3 Memdump plugin

3.3.3.3.1 Running the plugin

The memdump plugin is used to dump a process’ addressable memory space. If memory address
offsets are specified then they must be physical memory addresses. The plugin dumps all data
segments associated with a specified process to a destination file. Moreover, the plugin is worth
trying as the information attained from it, combined with any potential information obtained from
subsequent plugins, can be used in the reverse engineering of the malware.

The commands used to dump the addressable memory space of processes explorer.exe (PID
1008), cleansweep.exe (PID 2268) and wmiprvse.exe (PID 2912), were:

$ volatility -f ../../spyeye.vmem memdump -p 1008 -o
0x023e32f8 --dump-dir=memdump

$ volatility -f ../../spyeye.vmem memdump -p 2268 -o
0x02226b48 --dump-dir=memdump

$ volatility -f ../../spyeye.vmem memdump -p 2912 -o
0x01ed9b50 --dump-dir=memdump

This resulted in two dumped memory samples, one for PID 1008 (explorer.exe) and another for
PID 2268 (cleansweep.exe). Nothing was dumped for PID 2912 (wmiprvse.exe). The two
memory samples had the following metadata:

Table 24: Metadata for PID 1008 dumped using the Memdump plugin (SpyEye)

Filename memdump/1008.dmp

Size 174,731,264 bytes

SHA1 hash a9998d03c21fc7c216cd20784a5e95eb23b826c3

Fuzzy hash 3145728:9dVyCvqB0d3sRC/FKtK1Je9W54egVPWOBYC077f29IMzJCbmOB
8AW12gc4+JOtjj:9dVyLC/FKtK1Je9W54egVPWOBYC077fC

DRDC Valcartier TM 2013-155 47

Table 25: Metadata for PID 2268 dumped using the Memdump plugin (SpyEye)

Filename memdump/2268.dmp

Size 137,220,096 bytes

SHA1 hash fdcb9a51fc62168038222fdd758433888ec152a5

Fuzzy hash 3145728:2d3sRC/FKtK1Je9W54egVPWOBYC077f29IMzJCbmOB8AW1Xgc
4+JOtjBi2XmuPVI:ZC/FKtK1Je9W54egVPWOBYC077f29IMj

All file metadata was saved for potential future use.

3.3.3.3.2 Virus scanning and file hashing

As only two memory samples were dumped using the plugin, scanning and hashing was
straightforward. All six scanners found that the dumped two files, memdump/1008.dmp and
memdump/2268.dmp, were uninfected.

However, a strings-based 7, 8, 16 and 32-bit examination of file memdump/1008.dmp found that
it contained malicious strings, the same as found with the malfind plugin:

Dropper!main : CreateMutex->ERROR_ALREADY_EXISTS

Dropper : BOT_VERSION = %d, PID = %d, szModuleFileName =
"%s"

Thus, it can be readily concluded that the dumped memory sample for process PID 1008
contained not only all the code and data relating to explorer.exe but also the maliciously injected
code.

A thorough 7, 8, 16 and 32-bit strings examination of PID 2268 (cleansweep.exe) found no direct
evidence of malicious code or strings.

Despite these facts, fuzzy hashing has revealed that the memdump-dumped files for PID 1008 and
2268 share an 83% match between one another, indicating that much of the data and code
between them is similar.

Comparing their fuzzy hashes the malfind-dumped file did not reveal any matches, not even
partially. Thus, it can be concluded that any correlation between them is too small to be of
significance.

SHA1 hash matching between the two memdump-dumped files and the NSRL hast-set revealed
no matches. Fuzzy hash matching between the two files and the carved data files also revealed no
matches.

48 DRDC Valcartier TM 2013-155

3.3.3.3.3 Summary

Although the malfind plugin specifically dumped the injected code associated with the SpyEye
Trojan horse, the memdump plugin succeeded in dumping all memory and data segments
associated with processes PID 1008 and 2268 (explorer.exe and cleansweep.exe, respectively).

Based on these two memdump-dumped files, it was possible to determine based on 7, 8, 16 and
32-bit strings analysis that no malicious code was apparent in file 2268.dmp, thereby indicating
that even though cleansweep.exe is associated with the Trojan horse, possibly as a dropper, it is
not the actual Trojan horse.

However, malicious code was found relating to this Trojan horse within the memory space of PID
1008 (file memdump/1008.dmp), indicating that it contained not only the injected code detected
by the malfind plugin relating to explorer.exe but that it also contained all the other data segments
and executable code concerning explorer.exe.

3.3.3.4 Procexedump plugin

3.3.3.4.1 Running the plugin

Unlike the memdump plugin, the procexedump plugin dumps only a process’ executable code. If
memory addresses are specified then they must be physical memory offsets.

The commands used to dump the executable code for PIDs 1008, 2268 and 2912 (explorer.exe,
cleansweep.exe and wmiprvse.exe, respectively) were:

$ volatility -f ../../spyeye.vmem procexedump -p 1008 -o 0x023e32f8 --
dump-dir=procexedump

$ volatility -f ../../spyeye.vmem procexedump -p 2268 -o 0x02226b48 --
dump-dir=procexedump

$ volatility -f ../../spyeye.vmem procexedump -p 2912 -o 0x01ed9b50 --
dump-dir=procexedump

The second command generated the following error:

Process(V) ImageBase Name Result
---------- ---------- -------------------- ------
0x82226b48 ---------- cleansweep.exe Error: PEB at
0x7ffdd000 is paged

The third command generated the following error:

Process(V) ImageBase Name Result
---------- ---------- -------------------- ------
---------- ---------- -------------------- Error: Cannot
acquire process AS

DRDC Valcartier TM 2013-155 49

These errors indicate that the memory space for cleansweep.exe has been paged out. From the
second error, it can be concluded that PID 2912 is no longer available on this system and that the
system process-based list table was not correctly updated.

Only one file was dumped as a result of these commands and it had the following metadata:

Table 26: Metadata for PID 1008 dumped using the Procexedump plugin (SpyEye)

Filename procexedump/executable.1008.exe

Size 1,033,728 bytes

SHA1 hash d8fee09f59ef07aa2b363d10e107e0f58e930d90

Fuzzy hash 12288:8HmcoCUyZtwAvAs4wTCyrPTaoHWYUrkf8w0Vnzac1/g/J/vMS:mmf
ty/wAvN7lrwbkf8w0VnH1/g/J/k

All file metadata was saved for possible future use.

3.3.3.4.2 Virus scanning and file hashing

The SHA1 hash of file procexedump/executable.1008.exe was compared against the SHA1 hashes
of the NSRL hash-set but no matches were found.

Fuzzy hash matching was carried out comparing file procexedump/executable.1008.exe against
the carved data files but no matches, even partial, could be established. Then, fuzzy hash
matching was conducted comparing the procexedump-dumped memory sample against both the
malfind and memdump-dumped memory samples but no matches were established.

The six scanners were used if the procexedump-dumped memory sample, was potentially infected
but nothing was found.

A vigilant 7, 8, 16 and 32-bit strings-based examination of the memory sample failed to find
anything suspicious with this file.

3.3.3.4.3 Summary

The procexedump plugin, while having succeeded in dumping the executable code for PID 1008
(explorer.exe), did not contain any of the injected code found using the malfind plugin.
Moreover, the suspicion of process PID 2912 (wmiprvse.exe) has been laid to rest and should no
longer be considered an issue.

3.3.3.5 Procmemdump plugin

3.3.3.5.1 Using the plugin

Unlike the memdump plugin, the procmemdump plugin dumps a process’ executable code,
including associated slack space (all processes have some slack space). The commands used to

50 DRDC Valcartier TM 2013-155

do this for PIDs 1008, 2268 and 2912 (explorer.exe, cleansweep.exe and wmiprvse.exe,
respectively) were:

$ volatility -f ../../spyeye.vmem procmemdump -p 1008 -o 0x023e32f8 --
dump-dir=procexedump

$ volatility -f ../../spyeye.vmem procmemdump -p 2268 -o 0x02226b48 --
dump-dir=procexedump

The second command generated the following error:

Process(V) ImageBase Name Result
---------- ---------- -------------------- ------
0x82226b48 ---------- cleansweep.exe Error: PEB at
0x7ffdd000 is paged

This error indicates that the memory space for cleansweep.exe has been paged out.

Only one file was dumped as a result of these commands and it had the following metadata:

Table 27: Metadata for PID 1008 dumped using the Procmemdump plugin (SpyEye)

Filename procmemdump/executable.1008.exe

Size 1,044,480 bytes

SHA1 hash 6c14152bf01e688dcef57a18252d7443595063ee

Fuzzy hash 12288:XHmcoCUyZtwAvAs4wTCyrPT/oHWYUrkf8w0Vnzac1/g/J/vMS:3mft
y/wAvN7lrdbkf8w0VnH1/g/J/k

All file metadata was saved for possible future use.

3.3.3.5.2 Virus scanning and file hashing

The SHA1 hash of file procmemdump/executable.1008.exe was compared against the SHA1
hashes of the NSRL hash-set but no matches were found.

Fuzzy hash matching of file procmemdump/executable.1008.exe was carried out against the
carved data files but no matches, even partial, were found. Then fuzzy hash matching was
conducted against the malfind-dumped, memdump-dumped and procexedump-dumped files. A
97% match was established between procexedump/executable.1008.exe and
procmemdump/executable.1008.exe indicating they are very similar to one another. This was
expected as the only difference between them should be the process’s slack space.

Using the six scanners to verify the procmemdump-dumped memory sample, ClamAV reported
the file to be infected with “Trojan.Backdoor.Bot-1.” As none of the other scanners picked up on
this, a manual strings analysis was warranted.

DRDC Valcartier TM 2013-155 51

A vigilant 7, 8, 16 and 32-bit strings-based examination of the memory sample failed to find
anything suspicious with it. Thus, the detection was most likely a false positive.

3.3.3.5.3 Summary

The procmemdump plugin, while having succeeded in dumping the executable code for PID 1008
(explorer.exe), did not contain any of the injected code found using the malfind plugin.

Finally, the detection of the procmemdump-dumped file by ClamAV should be considered a false
positive.

3.3.4 Step 4: Examining the registry

The Windows registry serves to complicate and facilitate the investigator’s work. It is commonly
used by malware to configure system settings for permanent infection. However, the difficulty in
working with the registry lies in knowing where to look. The registry is spread out across many
data files (commonly known as registry hives) in various locations and each serves a specific
purpose with respect to system, application and user configurations. Annex D provides a listing
of registry keys commonly used by malware.

3.3.4.1 Hivelist plugin

The purpose of using the hivelist plugin is to determine which registry hives5 are available in the
memory image.

Consider the following output from this plugin, using command “volatility -f spyeye.vmem
hivelist”:

Table 28: Volatility output for the Hivelist plugin (SpyEye)

Virtual
Address

Physical
Address

Filename and Location

0xe22ad700 0x198a4700

\Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

 0xe2239008

0x19413008

\Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT
 0xe1bd85e0

0x0ec325e0

\Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat
 0xe1be0008

0x0ef65008

\Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

5 A registry hive denotes the actual disk file and its location on disk.

52 DRDC Valcartier TM 2013-155

Virtual
Address

Physical
Address

Filename and Location

0xe1b86400

0x0e684400

\Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat
 0xe1ba5008

0x0eb3b008

\Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT
 0xe1640b60

0x0a6e4b60

\Device\HarddiskVolume1\WINDOWS\system32\config\software
 0xe162ab60

0x0a742b60

\Device\HarddiskVolume1\WINDOWS\system32\config\default
 0xe16488d0

0x0a76f8d0

\Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY
 0xe140fb60

0x04309b60

\Device\HarddiskVolume1\WINDOWS\system32\config\SAM
 0xe171db60

0x02e7cb60

[no name]
 0xe1035b60

0x02a9eb60

\Device\HarddiskVolume1\WINDOWS\system32\config\system
 0xe102e008

0x02a98008

[no name]
 0x80670d28 0x00670d28

[no name]

3.3.4.2 Printkey plugin

Using the proposed registry keys identified in Annex D, 952 Volatility printkey commands were
issued via a script to query the memory image for information pertaining to the various registry
hives where this malware may have left traces of its activity. All output was captured and stored
in a text file for further analysis.

After running the script, no pertinent information concerning the infection could be found.

3.3.4.3 Userassist plugin

The final registry-based plugin run against the memory image was userassist. This plugin has the
potential to provide, among other things, registry-based information pertaining to programs run
and files opened by the user.

Unfortunately, this plugin did not result in any useful information concerning the infection.

3.3.5 Step 5: Strings analysis

Another technique must be used to extract pertinent information from the memory image
concerning the infection. Thus, using the strings command it may be possible to obtain additional
evidence about the malware and its effect on the underlying computer system.

DRDC Valcartier TM 2013-155 53

3.3.5.1 Extraction against plugin-based dumped files

This subsection conducts strings-based analysis against only those files successfully obtained
using the memory dumping plugins.

3.3.5.1.1 Commands

The following commands were used against the malfind and memdump plugin-dumped malware
samples for PID 1008:

$ strings -e s -t d malfind/
process.0x823e32f8.0xea000000.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d malfind/
process.0x823e32f8.0xea000000.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d malfind/
process.0x823e32f8.0xea000000.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d malfind/
process.0x823e32f8.0xea000000.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e s -t d memdump/1008.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d memdump/1008.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d memdump/1008.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d memdump/1008.dmp | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

These commands carryout case-insensitive (-i) searches using grep’s Perl-like (-P) pattern
matching; to remove non-pertinent output keyword filters are used. Output can be tuned where
keyword1, keyword2… keywordn represent the following word-filters:

• 2b8a408b56eaf3ce0198c91d8a75ec0
• bot_version
• Botnet
• cf.bin
• cleansweep
• config.bin
• cs.exe
• cs.idb

54 DRDC Valcartier TM 2013-155

• CurrentVersion\\Policies\\System
• CurrentVersion\\Run
• Dropper
• edc7c152759ba0482bd39db0ea2c4319
• Software\\
• Software\\Microsoft
• Software\\Microsoft\Security Center
• Software\\Microsoft\Windows\CurrentVersion\Policies\System
• Software\Microsoft\Windows\CurrentVersion\Run
• System\\
• System\\ControlSet
• System\\CurrentControlSet
• szmodulefilename
• Trojan

Consider that word-filters Software\\, System\\ and CurrentVersion\\ are indicative of registry
hives.

3.3.5.1.2 Pertinent strings

Running the aforementioned commands with the above listed keyword filters resulted in the
following pertinent strings, likely applicable to this specific malware:

• *Dropper* : BOT_VERSION = %d, PID = %d, szModuleFileName =
"%s"

• *Dropper*!main : CreateMutex->ERROR_ALREADY_EXISTS
• :\cleansweep.exe\cleansweep.exe.Config
• ??\C:\cleansweep.exe\cleansweep.exe.Config
• ??\C:\cleansweep.exe\cleansweep.exe.Manifest
• \??\C:\cleansweep.exe\cleansweep.exe
• \cleansweep.exe
• \cleansweep.exe\cleansweep.exe
• \cleansweep.exe\config.bin
• \Device\HarddiskVolume1\cleansweep.exe
• \Device\HarddiskVolume1\cleansweep.exe\cleansweep.exe
• \Device\HarddiskVolume1\cleansweep.exe\cleansweep.exeN
• \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.exe

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cf.bin

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\config.bin.zi
p

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.exe

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.idb

DRDC Valcartier TM 2013-155 55

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\edc7c152759ba
0482bd39db0ea2c4319

• __CLEANSWEEP__
• __CLEANSWEEP_RELOADCFG__
• __CLEANSWEEP_REPALREADYSENDED__
• __CLEANSWEEP_UNINSTALL__
• 2007 Microsoft CleanSweep system
• à½øcleansweep.exe
• bot_version
• C:\cleansweep.exe\cleansweep.exe
• cf.bin
• CF.BIN
• CleanSweep
• cleansweep.exe
• CLEANSWEEP.EXE
• cleansweep.exe
• CLEANSWEEP.EXEr
• CLEANSWEEP_UNINSTALL__
• cleansweepupd.exe
• config.bin
• CONFIG.BIN
• config.bin.zip
• CONFIG.BIN.ZIP
• Content-Disposition: form-data; name="bot_version"
• cs.exe
• CS.EXE
• cs.idb
• CS.IDB
• Description: Microsoft CleanSweep
• edc7c152759ba0482bd39db0ea2c4319
• edc7c152759ba0482bd39db0ea2c4319EDC7C152759BA0482BD39DB0EA
2C43192

• Iansweep.exe\cleansweep.exe
• Microsoft CleanSweep
• Norton CleanSweep
• spyeye/cf.binUT
• spyeye/config.bin.zipUT
• spyeye/cs.exeUT
• spyeye/cs.idbUT
• spyeye/edc7c152759ba0482bd39db0ea2c4319UT

3.3.5.1.3 Analysis

Based on the above output, it appears that the malware and its dropper both rely on various
configuration files. Moreover, the above output indicates that the dropper verifies if it has been

56 DRDC Valcartier TM 2013-155

correctly loaded, creates its mutex and uses false descriptions of itself to fool would-be
investigators. Finally, the location of the malware dropper and actual malware, cleansweep.exe
and cs.exe, are now definitively identified.

3.3.5.2 Extraction against memory image

This subsection conducts strings-based analysis against the entire memory image file,
spyeye.vmem.

3.3.5.2.1 Commands

Using the aforementioned keywords the following commands were run against the memory
image:

$ strings -e s -t d spyeye.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e S -t d spyeye.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e l -t d spyeye.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

$ strings -e L -t d spyeye.vmem | grep -i -P
‘(keyword1|keyword2|…|keywordn)’

3.3.5.2.2 Pertinent strings

Applying the aforementioned keywords to the above listed strings commands, the following
output has been manually pruned for pertinence. Thus, it is possible that some items will have
been inadvertently missed. The pertinent output is as follows:

• *Dropper* : BOT_VERSION = %d, PID = %d, szModuleFileName =
"%s"

• *Dropper*!main : CreateMutex->ERROR_ALREADY_EXISTS
• . DropPercent %d
• :\cleansweep.exe\cleansweep.e
• ; File Name : \\.host\Shared
Folders\rolson\malshare\families\spyeye\cs.exe

• \\.host\Shared
Folders\rolson\malshare\families\spyeye\cs.exe

• \cleansweep.exe
• \cleansweep.exe\cleansweep.exe
• \cleansweep.exe\config.bin
• \Device\HarddiskVolume1\cleansweep.exe
• \Device\HarddiskVolume1\cleansweep.exe\cleansweep.exe
• \Device\HarddiskVolume1\cleansweep.exe\cleansweep.exeN

DRDC Valcartier TM 2013-155 57

• \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.exe

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cf.bin

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\config.bin.zi
p

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.exe

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\cs.idb

• \Documents and
Settings\Administrator\Desktop\spyeye\spyeye\edc7c152759ba
0482bd39db0ea2c4319

• __CLEANSWEEP
• __CLEANSWEEP__
• __CLEANSWEEP_RELOADCFG__
• __CLEANSWEEP_REPALREADYSENDED__
• __CLEANSWEEP_UNINSTALL__
• _cleansweep_0
• à½øcleansweep.exe
• cleansweep.exe
• CLEANSWEEP.EXE
• CLEANSWEEP.EXEr
• CLEANSWEEP_UNINSTALL__
• cleansweepupd.exe
• config.bin
• CONFIG.BIN
• config.bin.zip
• CONFIG.BIN.ZIP
• Content-Disposition: form-data; name="bot_version"
• cs.exe
• CS.EXE
• cs.idb
• CS.IDB
• -data; name="bot_version"
• Dc:\documents and
settings\administrator\desktop\spyeye\spyeye\cs.exe

• Description: Microsoft CleanSweep
• Dropping reinit. DropPercent %d
• edc7c152759ba0482bd39db0ea2c4319
• edc7c152759ba0482bd39db0ea2c4319EDC7C152759BA0482BD39DB0EA
2C43192

• edc7c152759ba0482bd39db0ea2c4319UT
• Iansweep.exe\cleansweep.exe
• MD5: edc7c152759ba0482bd39db0ea2c4319 added to sample
package

58 DRDC Valcartier TM 2013-155

• m-data; name="bot_version"
• Microsoft CleanSweep
• Norton CleanSweep
• scription: Microsoft CleanSweep
• spyeye/cf.binUT
• spyeye/config.bin.zipUT
• spyeye/cs.exeUT
• spyeye/cs.idbUT
• spyeye/edc7c152759ba0482bd39db0ea2c4319UT

3.3.5.2.3 Analysis

The above output is similar to that obtained from the malware (see Section 3.3.5.1 for details).
Although additional context would certainly help, it appears that the malware and its dropper both
rely on various configuration files. Moreover, the above output indicates that the dropper verifies
if it has been correctly loaded, creates its mutex and uses false descriptions of itself to fool would-
be investigators. Finally, the location of the malware dropper and actual malware,
cleansweep.exe and cs.exe, are now definitively identified.

DRDC Valcartier TM 2013-155 59

4 Conclusion

It can be concluded that using sound investigative footwork, combined with the capabilities of the
Volatility memory analysis framework, investigators can readily analyse and investigate
suspected memory-based infections.

The Prolaco worm and SpyEye Trojan horse examined herein were not of equal difficulty.
Prolaco was simpler to detect than SpyEye, as it made no effort to hide itself through code
injection, although it was not detectable using a standard process listing (i.e. pslist). On the other
hand, SpyEye uses code injection to hide itself.

Unlike the Zeus analysis, this work relied far less on virus and malware reports and alerts,
although pertinent documentation was made for the reader.

What these two analyses have emphasized is the fallacy of overreliance on any one tool or
technique, be it malware scanners, memory frameworks or strings analysis. Instead, these tools
and techniques may be used to maximize an investigator’s ability to analyse a suspected memory
image efficiently. It was evident from the two analyses that excessive confidence of scanner-
based results can lead an investigator astray. To counterbalance this, the investigator should not
rely on any single scanner result; instead, credence should be emphasised when multiple scanners
agree on a file (or memory sample) being possibly infected. Moreover, when necessary, the
investigator should not hesitate from using strings-based analysis looking in order to look for
common malware indicators.

Throughout this document, as based on the proposed and lightly amended methodology, the
author has demonstrated the manner in which a forensic memory analysis can be conducted by
non-memory specialists. Thus, even novice memory investigators can successfully conduct
difficult memory analyses, when armed with straightforward tools, techniques and methodology,
as well as some basic background concerning the suspected infection.

However, not all analyses can rely on many well-prepared virus reports, as the analysis of the
Prolaco worm clearly demonstrated. Furthermore, not all investigations will be carried out
against known malware as the threat is constantly evolving. Nevertheless, the techniques and
methodology presented herein will be of use, to varying extents, against these newer malware.

This document, the second in a series of many, has guided the reader through two well-known
memory infections with the expectation of building a sufficient compendium of knowledge for
memory analysis for use by novice and expert memory analysts alike. While the degree of
difficulty varies substantially from case to case, the Volatility framework, when combined with
investigative knowhow, tools, techniques and methodology is a highly adept analysis-based
framework.

60 DRDC Valcartier TM 2013-155

References

[1] Kiguolis, Ugnius. Alg.exe information? What is alg.exe. Informational web site.
2Spyware.com. Unknown date. http://www.2-spyware.com/file-alg-exe.html.

[2] Sophos. W32/Prolaco-F. informational web site. Sophos.com. July 2010.
https://secure2.sophos.com/en-us/threat-center/threat-analyses/viruses-and-
spyware/W32~Prolaco-F/detailed-analysis.aspx.

[3] SecurityHome.eu. Worm: Win32/Prolaco.BC. Informational web report. SecuirityHome.eu.
June 2010.
http://www.securityhome.eu/malware/malware_pdf.php?mal_id=9165136514c1a3a9f832010.
00916478.

[4] Avira.com. Full description: Worm/Prolaco.C.2. Informational web site. July 2010.
Avira.com. http://www.avira.com/en/support-threats-description/tid/5377/tlang/en.

[5] McAfee.com. Virus Profile: W32/STD.worm.gen! 31C4A278EDB0. Informational web site.
McAfee.com. Unknown date.
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=1033122#.

[6] Sood, Aditya K. SpyEye Banking Trojan. SecNiche Security. Presentation at ToorCon 12 –
San Diego 2010. 2010.
http://www.secniche.org/presentations/toorcon_sandiego_2010_adityaks.pdf.

[7] Sood, Aditya K. and Enbody, Richard J. Spying on SpyEye: What Lies Beneath? SecNiche
Security and Department of Computer Science and Engineering (Michigan State University).
Presentation at HackInTheBox Security Conference, Amsterdam. 2011.
http://www.secniche.org/presentations/hitb_ams_2011_adityaks.pdf.

[8] McRee, Russ. Memory Analysis wuth DumpIt and Volatility. Journal article. ISSA Journal.
September 2011. http://holisticinfosec.org/toolsmith/pdf/september2011.pdf.

[9] Bodmer, Sean. SpyEye being kicked to the curb by its customers? Research Note.
Damballa.com. 2012. https://www.damballa.com/downloads/r_pubs/RN_SpyEye-Kicked-
to-Curb_Bodmer.pdf.

[10] Heriyanto, Andri P. What is the Proper Forensics Approach on Trojan Banking Malware
Incidents? Research paper. Edith Cowan University. 2012.
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-
redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q
%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH
%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253
F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dht
tp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D
1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAF
QjCNGgy2eEtW1KPvWbLsns3rGlidtwDw#search=%22WHAT%20PROPER%20FOREN
SICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3
F%22.

DRDC Valcartier TM 2013-155 61

http://www.2-spyware.com/file-alg-exe.html
https://secure2.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%7EProlaco-F/detailed-analysis.aspx
https://secure2.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%7EProlaco-F/detailed-analysis.aspx
http://www.securityhome.eu/malware/malware_pdf.php?mal_id=9165136514c1a3a9f832010.00916478
http://www.securityhome.eu/malware/malware_pdf.php?mal_id=9165136514c1a3a9f832010.00916478
http://www.avira.com/en/support-threats-description/tid/5377/tlang/en
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=1033122
http://www.secniche.org/presentations/toorcon_sandiego_2010_adityaks.pdf
http://www.secniche.org/presentations/hitb_ams_2011_adityaks.pdf
http://holisticinfosec.org/toolsmith/pdf/september2011.pdf
https://www.damballa.com/downloads/r_pubs/RN_SpyEye-Kicked-to-Curb_Bodmer.pdf
https://www.damballa.com/downloads/r_pubs/RN_SpyEye-Kicked-to-Curb_Bodmer.pdf
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1106&context=adf&sei-redir=1&referer=http%3A%2F%2Fwww.google.ca%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3DWHAT%2520IS%2520THE%2520PROPER%2520FORENSICS%2520APPROACH%2520ON%2520TROJAN%2520BANKING%2520MALWARE%2520INCIDENTS%253F%26source%3Dweb%26cd%3D1%26cad%3Drja%26ved%3D0CCoQFjAA%26url%3Dhttp%253A%252F%252Fro.ecu.edu.au%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1106%2526context%253Dadf%26ei%3DR9oLUuKFNMP7yAHCroDYDg%26usg%3DAFQjCNGgy2eEtW1KPvWbLsns3rGlidtwDw%23search=%22WHAT%20PROPER%20FORENSICS%20APPROACH%20TROJAN%20BANKING%20MALWARE%20INCIDENTS%3F%22

[11] Nayyar, Harshit. Clash of the Titans: ZeuS v SpyEye. SANS GIAC Gold Certification
report. SANS. 2010. http://www.sans.org/reading-room/whitepapers/malicious/clash-
titans-zeus-SpyEye-33393.

[12] Serban, Liviu. TR/Spy.Spyeye Analysis. Technical paper. Avira GmbH. Unknown date.
http://techblog.avira.com/wp-content/uploads/2011/03/Analysis-of-TR.Spy_.SpyEye.pdf.

[13] Kharouni, Loucif; Stevens, Kevin, et al. From Russia to Hollywood: Turning The Tables
On A Spyeye Cybercrime Ring. Research paper. Trend Micro. 2011.
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-
papers/wp_turning-the-tables_SpyEye-cibercrime-ring.pdf.

[14] Kharouni, Loucif. Automating Online Banking Fraud. Automatic Transfer System: The
Latest Cybercrime Toolkit Feature. Research paper. Trend Micro. 2012.
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-
papers/wp_automating_online_banking_fraud.pdf.

[15] Kirk, Jeremy. SpyEye Trojan defeating online banking defenses. Online article.
Computerworld.net. July 2011.
http://www.computerworld.com/s/article/9218645/SpyEye_Trojan_defeating_online_banki
ng_defenses.

[16] Waugh, Rob. New PC virus doesn’t just steal your money - it creates fake online bank
statements so you don’t know it’s gone. Online article. Dailymail.co.uk. January 2012.
http://www.dailymail.co.uk/sciencetech/article-2083271/SpyEye-trojan-horse-New-PC-
virus-steals-money-creates-fake-online-bank-statements.html.

[17] Mieres, Jorge. SpyEye Bot: Analysis of a new alternative scenario crimeware. Technical
paper. Malware Intelligence. February 2010. http://www.malwareint.com/docs/SpyEye-
analysis-en.pdf.

[18] Mieres, Jorge. SpyEye Bot (Part two): Conversations with the creator of crimeware.
Technical paper. Malware Intelligence. February 2010.
http://www.malwareint.com/docs/SpyEye-analysis-ii-en.pdf.

[19] Volatility. CommandReference: Example usage cases and output for Volatility 2.0
commands. Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

[20] Vatamanu, Chris. Win32.Worm.Prolaco.S. Online technical article. BitDefender.
Unknown date. http://www.bitdefender.com/VIRUS-1000638-en--Win32-Worm-Prolaco-
S.html.

[21] Wikipedia. Client/Server Runtime Subsystem. Online encyclopaedic entry. Wikimedia
Foundation Inc. Aprl 2013.
http://en.wikipedia.org/wiki/Client/Server_Runtime_Subsystem.

62 DRDC Valcartier TM 2013-155

http://www.sans.org/reading-room/whitepapers/malicious/clash-titans-zeus-SpyEye-33393
http://www.sans.org/reading-room/whitepapers/malicious/clash-titans-zeus-SpyEye-33393
http://techblog.avira.com/wp-content/uploads/2011/03/Analysis-of-TR.Spy_.SpyEye.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_turning-the-tables_SpyEye-cibercrime-ring.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_turning-the-tables_SpyEye-cibercrime-ring.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_automating_online_banking_fraud.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_automating_online_banking_fraud.pdf
http://www.computerworld.com/s/article/9218645/SpyEye_Trojan_defeating_online_banking_defenses
http://www.computerworld.com/s/article/9218645/SpyEye_Trojan_defeating_online_banking_defenses
http://www.dailymail.co.uk/sciencetech/article-2083271/SpyEye-trojan-horse-New-PC-virus-steals-money-creates-fake-online-bank-statements.html
http://www.dailymail.co.uk/sciencetech/article-2083271/SpyEye-trojan-horse-New-PC-virus-steals-money-creates-fake-online-bank-statements.html
http://www.malwareint.com/docs/SpyEye-analysis-en.pdf
http://www.malwareint.com/docs/SpyEye-analysis-en.pdf
http://www.malwareint.com/docs/SpyEye-analysis-ii-en.pdf
http://code.google.com/p/volatility/wiki/CommandReference
http://www.bitdefender.com/VIRUS-1000638-en--Win32-Worm-Prolaco-S.html
http://www.bitdefender.com/VIRUS-1000638-en--Win32-Worm-Prolaco-S.html
http://en.wikipedia.org/wiki/Client/Server_Runtime_Subsystem

[22] Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence
R&D Canada – Valcartier. TM 2013-018. April 2013.

[23] Carbone, Richard. File recovery and data extraction using automated data recovery tools: A
balanced approach using Windows and Linux when working with an unknown disk image
and filesystem. Technical memorandum. TM 2009-161. Defence R&D Canada -
Valcartier. January 2013. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc122/p531895_A1b.pdf.

DRDC Valcartier TM 2013-155 63

http://cradpdf.drdc-rddc.gc.ca/PDFS/unc122/p531895_A1b.pdf

This page intentionally left blank.

64 DRDC Valcartier TM 2013-155

 Anti-virus scanner logs for carved data files Annex A

A.1 Prolaco

In all, two virus matches were identified between the various scanners. The matches have been
identified in the following output.

A.1.1 Avast

The Avast anti-virus scanner was unable to detect any malware whatsoever for the recovered
data files.

A.1.2 AVG
./recup_dir.2/f0139704.exe Virus identified Worm/Generic2.FQ ← Match 1
./recup_dir.2/f0233072.dll Virus found Win32/Heur
./recup_dir.2/f0235672.dll Virus found Win32/Heur ← Match 2
./recup_dir.2/f0236256.dll Virus found Win32/Heur

A.1.3 BitDefender

./recup_dir.2/f0153976.exe infected: Gen:Variant.Renos.14

A.1.4 ClamAV

./recup_dir.1/f0008976.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0014888.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0016968.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0016992.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0021024.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0023984.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.1/f0030600.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0053120.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0055560.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0062272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0084616.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0089144.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0097936.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0102264.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0102704.exe: PUA.Win32.Packer.BorlandCpp-8 FOUND

./recup_dir.1/f0103800.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0109736.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0115072.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

DRDC Valcartier TM 2013-155 65

./recup_dir.1/f0123048.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0129560.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.1/f0131920.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0139704.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND ← Match 1

./recup_dir.2/f0139720.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0142536.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0152256.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0156760.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0160720.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0161656.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0162968.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167040.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0167072.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167104.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167120.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0167168.exe: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0167280.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167288.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167344.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0167352.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0167680.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167960.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167968.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0167992.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0168256.dll: PUA.Win32.Packer.BorlandDelphi-2 FOUND

./recup_dir.2/f0169264.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0185552.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0194104.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0204752.dll: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0207224.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0216392.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0217936.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0219024.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0219512.exe: PUA.Win32.Packer.Msvcpp FOUND

./recup_dir.2/f0228584.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0229384.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0233040.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0234168.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0235672.dll: PUA.Win32.Packer.Msvcpp FOUND ← Match 2

./recup_dir.2/f0237232.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0244384.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0245136.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

./recup_dir.2/f0245336.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

66 DRDC Valcartier TM 2013-155

A.1.5 F-Prot

The FRISK F-Prot anti-virus scanner was unable to detect any malware whatsoever for the
recovered data files.

A.1.6 McAfee

The McAfee anti-virus scanner was unable to detect any malware whatsoever for the recovered
data files.

DRDC Valcartier TM 2013-155 67

A.2 SpyEye

In all, five virus matches were identified between the various scanners. The matches have been
identified in the following output.

A.2.1 Avast

The Avast anti-virus scanner was unable to detect any malware whatsoever for the recovered data
files.

A.2.2 AVG

recup_dir.1/f0022784.dll Virus found Win32/Heur
recup_dir.1/f0167784.dll Virus found Win32/Heur
recup_dir.1/f0176416.dll Virus found Win32/Heur
recup_dir.1/f0184448.dll Virus found Win32/Heur
recup_dir.1/f0227256.dll Virus found Win32/Heur
recup_dir.1/f0242368.exe Virus found Win32/Heur
recup_dir.1/f0263584.exe Virus found Win32/Heur ← Match 1
recup_dir.1/f0264744.dll Virus found Win32/Heur
recup_dir.2/f0263296.dll Virus found Win32/Heur ← Match 2
recup_dir.2/f0263528.dll Virus found Win32/Heur
recup_dir.2/f0305128.dll Virus found Win32/Heur ← Match 3
recup_dir.2/f0335944.dll Virus found Win32/Heur
recup_dir.2/f0465128.dll Virus found Win32/Heur
recup_dir.2/f0513352.dll Virus found Win32/Heur
recup_dir.2/f0514448.exe Virus found Win32/Heur
recup_dir.2/f0515800.dll Virus found Win32/Heur
recup_dir.2/f0612712.dll Virus found Win32/Heur
recup_dir.2/f0631784.dll Virus found Win32/Heur
recup_dir.2/f0633168.dll Virus found Win32/Heur
recup_dir.2/f0702456.dll Virus found Win32/Heur
recup_dir.3/f0757168.dll Virus found Win32/Heur
recup_dir.3/f0767272.dll Virus found Win32/Heur
recup_dir.3/f0769864.dll Virus found Win32/Heur
recup_dir.3/f0952760.dll Virus found Win32/Heur ← Match 4
recup_dir.3/f0993000.dll Virus found Win32/Heur

A.2.3 BitDefender

recup_dir.1/f0292960.exe infected: Gen:Variant.Kazy.9508
recup_dir.2/f0612984.exe infected: Gen:Trojan.Heur.JP.rmW@a4vC9Ke
recup_dir.2/f0630512.exe infected: Gen:Trojan.Heur.rmW@!Fh9mcb ← Match 5

68 DRDC Valcartier TM 2013-155

A.2.4 ClamAV

recup_dir.1/f0020448.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0061184.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0103960.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0158928.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0182456.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0184080.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0186304_netmsg.DLL: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0186616.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0235160.dll: PUA.Win32.Packer.SetupExeSection FOUND
recup_dir.1/f0258912.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0263576.exe: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0263584.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND ← Match 1
recup_dir.1/f0263600.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0263632.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0263640.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0263744.exe: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0263960.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0267776.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0269040.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0280160.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0285144.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.1/f0295536.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.1/f0297488.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0263296.dll: PUA.Win32.Packer.Msvcpp FOUND ← Match 2
recup_dir.2/f0263560.exe: PUA.Win32.Packer.SetupExeSection FOUND
recup_dir.2/f0263568.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0305128.dll: PUA.Win32.Packer.Msvcpp FOUND ← Match 3
recup_dir.2/f0313568.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0322664.dll: PUA.Win32.Packer.Pequake-3 FOUND
recup_dir.2/f0324792.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0342664.dll: PUA.Win32.Packer.Upx-28 FOUND
recup_dir.2/f0442416.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
recup_dir.2/f0444800.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0445384.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0452400.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0463224.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0463904.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0464272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0465776.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0466144.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0467744.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0469912.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0472848.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0484336.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0487192.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0492176.dll: PUA.Win32.Packer.Msvcpp FOUND

DRDC Valcartier TM 2013-155 69

recup_dir.2/f0497368.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0500840.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0501472.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0501816.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0516456.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0518416.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0525760.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0534888.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0558272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0598232.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0614640.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0615928.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0617048.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0623960.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0628440.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0630512.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND ← Match 5
recup_dir.2/f0636264.dll: PUA.Win32.Packer.Upx-28 FOUND
recup_dir.2/f0647968.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0652416.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0653032.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0655848.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
recup_dir.2/f0659656.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0660216.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0676176.dll: PUA.Win32.Packer.Upx-28 FOUND
recup_dir.2/f0680448.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.2/f0701040.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.2/f0705216.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
recup_dir.3/f0714224.dll: PUA.Win32.Packer.Msvcpp FOUND
recup_dir.3/f0729064.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0751616.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0764912.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
recup_dir.3/f0781232.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0790312.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0802232.dll: PUA.Win32.Packer.SetupExeSection FOUND
recup_dir.3/f0807104.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0811248.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0811440.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0815704.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0818848.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0824864.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0826160.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0826616.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0844136.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0848160.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0855568.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0859976.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0864056.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0878336.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

70 DRDC Valcartier TM 2013-155

recup_dir.3/f0893272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0903456.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0908560.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0909344.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0910464.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0910920.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0913768.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0921696.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0937960.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0942424.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0943056.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0946768.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0950288.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0952760.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND ← Match 4
recup_dir.3/f0953808.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0958296.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
recup_dir.3/f0963552.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0966440.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0979144.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0980008.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0981976.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0987856.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0990424.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f0990816.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f1001008.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
recup_dir.3/f1046000.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

A.2.5 F-Prot

recup_dir.1/f0111368.exe <W32/Heuristic-CO3!Eldorado (not disinfectable)>
recup_dir.2/f0306064.dll <W32/Heuristic-COC!Eldorado (not disinfectable)>
recup_dir.2/f0424400.dll <W32/Heuristic-COC!Eldorado (not disinfectable)>
recup_dir.2/f0554088.exe <W32/Heuristic-CO3!Eldorado (not disinfectable)>

A.2.6 McAfee

recup_dir.2/f0542616.exe ... Found the Downloader-ASH.gen.g trojan !!!

DRDC Valcartier TM 2013-155 71

This page intentionally left blank.

72 DRDC Valcartier TM 2013-155

 Volatility Windows-based plugins Annex B

The following is a complete list of the default Windows-based plugins provided by Volatility
version 2.2:

Table B.1: List of Volatility 2.2 plugins.

Plugin Capability (as per Volatility --help output)

apihooks Detect API hooks in process and kernel memory

atoms Print session and window station atom tables

atomscan Pool scanner for _RTL_ATOM_TABLE

bioskbd Reads the keyboard buffer from Real Mode memory

callbacks Print system-wide notification routines

clipboard Extract the contents of the windows clipboard

cmdscan Extract command history by scanning for _COMMAND_HISTORY

connections Print list of open connections [Windows XP and 2003 Only]

connscan Scan Physical memory for _TCPT_OBJECT objects (tcp connections)

consoles Extract command history by scanning for _CONSOLE_INFORMATION

crashinfo Dump crash-dump information

deskscan Poolscaner for tagDESKTOP (desktops)

devicetree Show device tree

dlldump Dump DLLs from a process address space

dlllist Print list of loaded dlls for each process

driverirp Driver IRP hook detection

driverscan Scan for driver objects _DRIVER_OBJECT

envars Display process environment variables

eventhooks Print details on windows event hooks

evtlogs Extract Windows Event Logs (XP/2003 only)

filescan Scan Physical memory for _FILE_OBJECT pool allocations

gahti Dump the USER handle type information

DRDC Valcartier TM 2013-155 73

Plugin Capability (as per Volatility --help output)

gditimers Print installed GDI timers and callbacks

gdt Display Global Descriptor Table

getservicesids Get the names of services in the Registry and return Calculated SID

getsids Print the SIDs owning each process

handles Print list of open handles for each process

hashdump Dumps passwords hashes (LM/NTLM) from memory

hibinfo Dump hibernation file information

hivedump Prints out a hive

hivelist Print list of registry hives.

hivescan Scan Physical memory for _CMHIVE objects (registry hives)

idt Display Interrupt Descriptor Table

imagecopy Copies a physical address space out as a raw DD image

imageinfo Identify information for the image

impscan Scan for calls to imported functions

kdbgscan Search for and dump potential KDBG values

kpcrscan Search for and dump potential KPCR values

ldrmodules Detect unlinked DLLs

lsadump Dump (decrypted) LSA secrets from the registry

malfind Find hidden and injected code

memdump Dump the addressable memory for a process

memmap Print the memory map

messagehooks List desktop and thread window message hooks

moddump Dump a kernel driver to an executable file sample

modscan Scan Physical memory for _LDR_DATA_TABLE_ENTRY objects

modules Print list of loaded modules

mutantscan Scan for mutant objects _KMUTANT

patcher Patches memory based on page scans

74 DRDC Valcartier TM 2013-155

Plugin Capability (as per Volatility --help output)

printkey Print a registry key, and its subkeys and values

procexedump Dump a process to an executable file sample

procmemdump Dump a process to an executable memory sample

pslist Print all running processes by following the EPROCESS lists

psscan Scan Physical memory for _EPROCESS pool allocations

pstree Print process list as a tree

psxview Find hidden processes with various process listings

raw2dmp Converts a physical memory sample to a windbg crash dump

screenshot Save a pseudo-screenshot based on GDI windows

sessions List details on _MM_SESSION_SPACE (user logon sessions)

shimcache Parses the Application Compatibility Shim Cache registry key

sockets Print list of open sockets

sockscan Scan Physical memory for _ADDRESS_OBJECT objects (tcp sockets)

ssdt Display SSDT entries

strings Match physical offsets to virtual addresses (may take a while, VERY
verbose)

svcscan Scan for Windows services

symlinkscan Scan for symbolic link objects

thrdscan Scan physical memory for _ETHREAD objects

threads Investigate _ETHREAD and _KTHREADs

timers Print kernel timers and associated module DPCs

userassist Print userassist registry keys and information

userhandles Dump the USER handle tables

vaddump Dumps out the vad sections to a file

vadinfo Dump the VAD info

vadtree Walk the VAD tree and display in tree format

vadwalk Walk the VAD tree

volshell Shell in the memory image

DRDC Valcartier TM 2013-155 75

Plugin Capability (as per Volatility --help output)

windows Print Desktop Windows (verbose details)

wintree Print Z-Order Desktop Windows Tree

wndscan Pool scanner for tagWINDOWSTATION (window stations)

yarascan Scan process or kernel memory with Yara signatures

76 DRDC Valcartier TM 2013-155

 NSRL file hash matches for carved data files Annex C

C.1 Prolaco

This annex provides a listing of those carved data files obtained in Section 2.2.3 that matched the
SHA1 hashes of the NSRL hash-set (March 2013). In all, two unique NSRL-based SHA1
matches were obtained.

These unique SHA1-filename matches are as follows:

Table C.1: SHA1 hash vs. NSRL filename for carved data files (Prolaco)

SHA1 hash Filename

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 comctl.man

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 COMCTL.MAN

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 X86_POLICY.6.0.MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_X-
WW_EB84B25E.MANIFEST

C5B52B71F4C5F933815D7D606175EA0BB37DC548 controls.man

C5B52B71F4C5F933815D7D606175EA0BB37DC548 CONTROLS.MAN

C5B52B71F4C5F933815D7D606175EA0BB37DC548 X86_MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_
X-WW_A84F1FF9.MANIFEST

C.2 SpyEye

This annex provides a listing of those carved data files obtained in Section 3.2.3 that matched the
SHA1 hashes of the NSRL hash-set (March 2013). In all, six unique NSRL-based SHA1 matches
were obtained. In turn, these six hashes matched up against twelve unique filenames.

These unique SHA1-filename matches are as follows:

Table C.2: SHA1 hash vs. NSRL filename for carved data files (SpyEye)

SHA1 hash Filename

15740B197555BA8E162C37A60BA655151E3BEBAE index.dat

67DE4E3707D69562F8D57558E6CC5144274D96AD __0X002C

DRDC Valcartier TM 2013-155 77

SHA1 hash Filename

6F9F663CDFBC2592EAB4C43FEE359EFFD37D60F2 dxgthk.sys

6F9F663CDFBC2592EAB4C43FEE359EFFD37D60F2 DXGTHK.SYS

 80EB8A76E5579B0136281E4DD4E2D4E56B249E4C null.sys

80EB8A76E5579B0136281E4DD4E2D4E56B249E4C NULL.SYS

 E07EE000BC06B455534D8A517305C1208D30306B audstub.sys

 FB33FD00711440B9D0F3B3D526A753ED75640797 Windows Navigations Start.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 navstart.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 xpstart.wa!

FB33FD00711440B9D0F3B3D526A753ED75640797 xpstart.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 XPStart.wav

78 DRDC Valcartier TM 2013-155

 Commonly used registry keys in a typical Annex D
malware infection

D.1 Recommended registry keys for use with Volatility

Based on the author’s own use and research of various Windows registry keys commonly used by
malware, the following keys are recommended for evaluation. These keys are readily integrated
into scripts using appropriate Volatility-based printkey plugin commands.

However, these keys will not work against all versions of Windows. Some apply to 2000/XP
systems while others apply to recent versions of Windows. The reader’s success in using these
keys will undoubtedly vary according to the underlying Windows platform to be analysed and the
malware’s propensity for using the registry.

The proposed keys have been aggregated and their preceding HKLM\Software, HKLM\System,
HKCU\Software and HKCU based information stripped so that they can be readily used by
Volatility.

The following keys are used in this work against both the Prolaco worm and SpyEye Trojan
horse:

• Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache
• Control Panel\Desktop
• Control Panel\Desktop\ScreenSaveActive
• ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\Auth

orizedApplications\List
• CurrentControlSet\Control\Session Manager\AppCertDlls
• CurrentControlSet\Control\Session Manager\AppCompatCache\AppCompatCache
• CurrentControlSet\Control\Session Manager\AppCompatibility\AppCompatCache
• CurrentControlSet\Control\SessionManager\Memory Management
• CurrentControlSet\Services
• Microsoft\Active Setup\Installed Components
• Microsoft\DirectPlugin
• Microsoft\Internet Explorer\CustomizeSearch
• Microsoft\Internet Explorer\Main
• Microsoft\Internet Explorer\Main\Default_Page_URL
• Microsoft\Internet Explorer\Main\Default_Search_URL
• Microsoft\Internet Explorer\Main\HomeOldSP
• Microsoft\Internet Explorer\Main\Local Page
• Microsoft\Internet Explorer\Main\Search Bar
• Microsoft\Internet Explorer\Main\Search Page
• Microsoft\Internet Explorer\Main\SearchAssistant
• Microsoft\Internet Explorer\Main\SearchURL
• Microsoft\Internet Explorer\Main\Start Page

DRDC Valcartier TM 2013-155 79

• Microsoft\Internet Explorer\Main\Use Search Asst
• Microsoft\Internet Explorer\Search
• Microsoft\Internet Explorer\Search Bar
• Microsoft\Internet Explorer\Search\CustomizeSearch
• Microsoft\Internet Explorer\Search\SearchAssistant
• Microsoft\Internet Explorer\SearchURL
• Microsoft\Internet Explorer\Toolbar
• Microsoft\Internet Explorer\TypedURLs
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\Run
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\Runonce
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\RunonceEx
• Microsoft\Windows NT\CurrentVersion\Windows
• Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs
• Microsoft\Windows NT\CurrentVersion\Windows\Load
• Microsoft\Windows NT\CurrentVersion\Winlogon
• Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
• Microsoft\Windows NT\winlogon\userinit
• Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects
• Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedMRU
• Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU
• Microsoft\Windows\CurrentVersion\Explorer\RecentDocs
• Microsoft\Windows\CurrentVersion\Explorer\RunMRU
• Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
• Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
• Microsoft\Windows\CurrentVersion\Explorer\UserAssist
• Microsoft\Windows\CurrentVersion\Internet Settings
• Microsoft\Windows\CurrentVersion\Internet Settings\EnableAutodial
• Microsoft\Windows\CurrentVersion\Internet Settings\EnableHttp1_1
• Microsoft\Windows\CurrentVersion\Internet Settings\MaxConnectionsPer1_0Server
• Microsoft\Windows\CurrentVersion\Internet Settings\MaxConnectionsPerServer
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyHttp1.1
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyOverride
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer
• Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
• Microsoft\Windows\CurrentVersion\Run
• Microsoft\Windows\CurrentVersion\RunOnce
• Microsoft\Windows\CurrentVersion\RunOnce\Setup
• Microsoft\Windows\CurrentVersion\RunOnceEx
• Microsoft\Windows\CurrentVersion\RunServices

80 DRDC Valcartier TM 2013-155

• Microsoft\Windows\CurrentVersion\RunServicesOnce
• Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad
• Microsoft\Windows\CurrentVersion\URL
• Microsoft\Windows\CurrentVersion\URL\DefaultPrefix
• Microsoft\Windows\CurrentVersion\URL\Prefixes
• Microsoft\Windows\ShellNoRoam\MUICache

D.2 Printkey-based script

The aforementioned keys can be readily integrated into scripts. For example, consider the
following Volatility printkey command:

$ volatility -f spyeye.vmem printkey -o 0xe1c49008 -K
″Microsoft\Windows\CurrentVersion\RunServices″

D.3 Root Registry Keys

The author-proposed registry keys are based on the following root registry keys:

 HKEY_CURRENT_USER

HKEY_CURRENT_USER\Software

HKEY_LOCAL_MACHINE\Software

HKEY_LOCAL_MACHINE\System

DRDC Valcartier TM 2013-155 81

This page intentionally left blank.

82 DRDC Valcartier TM 2013-155

 Fuzzy hashes for Malfind plugin dumped Annex E
processes

This annex lists the fuzzy hash matches for those memory sample files dumped using the malfind
plugin from the SpyEye memory image. They are listed in a match-based descending order as
follows:

Table E.1: Fuzzy hashes for Malfind-dumped processes (SpyEye)

Filename 1 Filename 2 Match (in %)

process.0x81f4b020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x81f5e020.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x82067858.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x82067858.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x8207d5f0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x8207d5f0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x820bd760.0x15d0000.dmp process.0x820bd760.0x13d0000.dmp (100)

process.0x820bd760.0x19d0000.dmp process.0x820bd760.0x13d0000.dmp (100)

process.0x820bd760.0x19d0000.dmp process.0x820bd760.0x15d0000.dmp (100)

process.0x820bd760.0x1bd0000.dmp process.0x820bd760.0x13d0000.dmp (100)

process.0x820bd760.0x1bd0000.dmp process.0x820bd760.0x15d0000.dmp (100)

process.0x820bd760.0x1bd0000.dmp process.0x820bd760.0x19d0000.dmp (100)

process.0x8214ba18.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x8214ba18.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x8214ba18.0xea50000.dmp process.0x82067858.0xea50000.dmp (100)

process.0x82159958.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x82159958.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x82159958.0xea50000.dmp process.0x82067858.0xea50000.dmp (100)

process.0x82159958.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (100)

process.0x8226cda0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x8226cda0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x8226cda0.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x82284b80.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

DRDC Valcartier TM 2013-155 83

Filename 1 Filename 2 Match (in %)

process.0x82284b80.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x82284b80.0xea50000.dmp process.0x82067858.0xea50000.dmp (100)

process.0x82284b80.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (100)

process.0x82284b80.0xea50000.dmp process.0x82159958.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x82067858.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x82159958.0xea50000.dmp (100)

process.0x822a0758.0xea50000.dmp process.0x82284b80.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x82067858.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x82159958.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x82284b80.0xea50000.dmp (100)

process.0x822e69f8.0xea50000.dmp process.0x822a0758.0xea50000.dmp (100)

process.0x8230c5f8.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (100)

process.0x82389020.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (100)

process.0x82389020.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (100)

process.0x823f2020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x823f2020.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x823f2020.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x823f2020.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (100)

process.0x82406da0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x82406da0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x82406da0.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x82406da0.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (100)

process.0x82406da0.0xea50000.dmp process.0x823f2020.0xea50000.dmp (100)

process.0x824264c0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x824264c0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

84 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x824264c0.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x824264c0.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (100)

process.0x824264c0.0xea50000.dmp process.0x823f2020.0xea50000.dmp (100)

process.0x824264c0.0xea50000.dmp process.0x82406da0.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x823f2020.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x82406da0.0xea50000.dmp (100)

process.0x82436a48.0xea50000.dmp process.0x824264c0.0xea50000.dmp (100)

process.0x824578b0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (100)

process.0x824578b0.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (100)

process.0x824578b0.0xea50000.dmp process.0x82389020.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x823f2020.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x82406da0.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x824264c0.0xea50000.dmp (100)

process.0x82458020.0xea50000.dmp process.0x82436a48.0xea50000.dmp (100)

process.0x81ec2020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x81f4b020.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x81f4c550.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x81f4c550.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x81f4c550.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x81f5e020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x81f5e020.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x81f5e020.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82067858.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

DRDC Valcartier TM 2013-155 85

Filename 1 Filename 2 Match (in %)

process.0x82067858.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x82067858.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x82072660.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x8207d5f0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x8207d5f0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x8207d5f0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x8207d5f0.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x8207d5f0.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x820bd760.0xeab0000.dmp process.0x81f5e020.0xeab0000.dmp (99)

process.0x8214ba18.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x8214ba18.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x8214ba18.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x8214ba18.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x8214ba18.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (99)

process.0x82159958.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x82159958.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x82159958.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82159958.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x82159958.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x8226cda0.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

86 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x82284b80.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x82284b80.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x82284b80.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82284b80.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x82284b80.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (99)

process.0x82284b80.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (99)

process.0x822a0758.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (99)

process.0x822e69f8.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x8236d7a0.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (99)

process.0x82389020.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

DRDC Valcartier TM 2013-155 87

Filename 1 Filename 2 Match (in %)

process.0x823f2020.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x823f2020.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x82406da0.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x824264c0.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

88 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x82436a48.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x82436a48.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x824578b0.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x82067858.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x82072660.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x82159958.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x82284b80.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x822a0758.0xea50000.dmp (99)

process.0x82458020.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (99)

process.0x81f7a708.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (97)

process.0x81f7a708.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (97)

process.0x81f7a708.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (97)

process.0x81f7a708.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (97)

process.0x81f7a708.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (97)

process.0x82067858.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82072660.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x8207d5f0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x8214ba18.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82159958.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x8226cda0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82284b80.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x822a0758.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

DRDC Valcartier TM 2013-155 89

Filename 1 Filename 2 Match (in %)

process.0x822e69f8.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x82067858.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x82072660.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x82159958.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x82284b80.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x822a0758.0xea50000.dmp (97)

process.0x8230c5f8.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x82072660.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (97)

process.0x8236d7a0.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x82067858.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x82072660.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x82159958.0xea50000.dmp (97)

90 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x82389020.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x82284b80.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x822a0758.0xea50000.dmp (97)

process.0x82389020.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (97)

process.0x823f2020.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x823f2020.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (97)

process.0x823f2020.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (97)

process.0x823f2020.0xea50000.dmp process.0x82389020.0xea50000.dmp (97)

process.0x82406da0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82406da0.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (97)

process.0x82406da0.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (97)

process.0x82406da0.0xea50000.dmp process.0x82389020.0xea50000.dmp (97)

process.0x824264c0.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x824264c0.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (97)

process.0x824264c0.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (97)

process.0x824264c0.0xea50000.dmp process.0x82389020.0xea50000.dmp (97)

process.0x82436a48.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82436a48.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (97)

process.0x82436a48.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (97)

process.0x82436a48.0xea50000.dmp process.0x82389020.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x82067858.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x82072660.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x82159958.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (97)

DRDC Valcartier TM 2013-155 91

Filename 1 Filename 2 Match (in %)

process.0x824578b0.0xea50000.dmp process.0x82284b80.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x822a0758.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x823f2020.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x82406da0.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x824264c0.0xea50000.dmp (97)

process.0x824578b0.0xea50000.dmp process.0x82436a48.0xea50000.dmp (97)

process.0x82458020.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (97)

process.0x82458020.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (97)

process.0x82458020.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (97)

process.0x82458020.0xea50000.dmp process.0x82389020.0xea50000.dmp (97)

process.0x82458020.0xea50000.dmp process.0x824578b0.0xea50000.dmp (97)

process.0x823e32f8.0xea50000.dmp process.0x81f4c550.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x81f7a708.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x82072660.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x8230c5f8.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x8236d7a0.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x82389020.0xea50000.dmp (96)

process.0x823e32f8.0xeab0000.dmp process.0x820bd760.0xeab0000.dmp (96)

process.0x824578b0.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (96)

process.0x823e32f8.0xea50000.dmp process.0x81ebd300.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x81ec2020.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x81f4b020.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x81f5e020.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x82067858.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x8207d5f0.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x8214ba18.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x82159958.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x8226cda0.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x82284b80.0xea50000.dmp (94)

process.0x823e32f8.0xea50000.dmp process.0x822a0758.0xea50000.dmp (94)

92 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x823e32f8.0xea50000.dmp process.0x822e69f8.0xea50000.dmp (94)

process.0x823e32f8.0xeab0000.dmp process.0x81f5e020.0xeab0000.dmp (94)

process.0x823f2020.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (94)

process.0x82406da0.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (94)

process.0x824264c0.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (94)

process.0x82436a48.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (94)

process.0x82458020.0xea50000.dmp process.0x823e32f8.0xea50000.dmp (94)

process.0x823e32f8.0xeab0000.dmp process.0x823e32f8.0xea50000.dmp (40)

process.0x81f5e020.0xeab0000.dmp process.0x81ebd300.0xea50000.dmp (38)

process.0x81f5e020.0xeab0000.dmp process.0x81ec2020.0xea50000.dmp (38)

process.0x81f5e020.0xeab0000.dmp process.0x81f4b020.0xea50000.dmp (38)

process.0x81f5e020.0xeab0000.dmp process.0x81f4c550.0xea50000.dmp (38)

process.0x81f5e020.0xeab0000.dmp process.0x81f5e020.0xea50000.dmp (38)

process.0x81f7a708.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82067858.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82072660.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x8207d5f0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81ebd300.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81ec2020.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81f4b020.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81f4c550.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81f5e020.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x81f7a708.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x82067858.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x82072660.0xea50000.dmp (38)

process.0x820bd760.0xeab0000.dmp process.0x8207d5f0.0xea50000.dmp (38)

process.0x8214ba18.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x8214ba18.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82159958.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82159958.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x8226cda0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

DRDC Valcartier TM 2013-155 93

Filename 1 Filename 2 Match (in %)

process.0x8226cda0.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82284b80.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82284b80.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x822a0758.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x822a0758.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x822e69f8.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x822e69f8.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x8230c5f8.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x8230c5f8.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x8236d7a0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x8236d7a0.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82389020.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82389020.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x823f2020.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x823f2020.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82406da0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82406da0.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x824264c0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x824264c0.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82436a48.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82436a48.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x824578b0.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x824578b0.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x82458020.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (38)

process.0x82458020.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (38)

process.0x823e32f8.0xea50000.dmp process.0x81f5e020.0xeab0000.dmp (36)

process.0x823e32f8.0xea50000.dmp process.0x820bd760.0xeab0000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x81ebd300.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x81ec2020.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x81f4b020.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x81f4c550.0xea50000.dmp (36)

94 DRDC Valcartier TM 2013-155

Filename 1 Filename 2 Match (in %)

process.0x823e32f8.0xeab0000.dmp process.0x81f5e020.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x81f7a708.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x82067858.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x82072660.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x8207d5f0.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x8214ba18.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x82159958.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x8226cda0.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x82284b80.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x822a0758.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x822e69f8.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x8230c5f8.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x8236d7a0.0xea50000.dmp (36)

process.0x823e32f8.0xeab0000.dmp process.0x82389020.0xea50000.dmp (36)

process.0x823f2020.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

process.0x82406da0.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

process.0x824264c0.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

process.0x82436a48.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

process.0x824578b0.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

process.0x82458020.0xea50000.dmp process.0x823e32f8.0xeab0000.dmp (36)

DRDC Valcartier TM 2013-155 95

This page intentionally left blank.

96 DRDC Valcartier TM 2013-155

Bibliography

Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-018. April 2013.

Volatility. CommandReference: Example usage cases and output for Volatility 2.0 commands.
Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

DRDC Valcartier TM 2013-155 97

http://code.google.com/p/volatility/wiki/CommandReference

List of symbols/abbreviations/acronyms/initialisms

ASCII American Standard Code for Information Interchange

AV Anti-Virus or Antivirus

CFNOC Canadian Forces Network Operations Centre

CORFC Centre d'opérations des réseaux des Forces canadiennes

CTPH Context Triggered Piecewise Hash

Sometimes known as fuzzy hash or ssdeep hash

DLL Dynamically Loaded Library

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

EDT Eastern Daylight Time

EXT4 Fourth Extended Filesystem

FTP File Transfer Protocol

GICT Groupe intégré de la criminalité technologique

GRC Gendarmerie Royale du Canada

GRE Generic Routing Encapsulation

HKCU HKEY_LOCAL_USER

HKLM HKEY_LOCAL_MACHINE

ID Identification

IP Internet Protocol

ITCU Integrated Technological Crime Unit

MAC Mandatory Access Control

MiB Mebibyte

N/A Not Available

NIST National Institute of Standards and Technology

NSRL National Software Reference Library

NTP Network Time Protocol

PAE Physical Address Extension

PE Portable Executable

98 DRDC Valcartier TM 2013-155

PID Process ID

PPID Parent Process ID

R&D Research & Development

RAM Random Access Memory

RCMP Royal Canadian Mounted Police

RDDC Recherche et Développement pour la Défense Canada

RTSP Real Time Streaming Protocol

SHA1 Secure Hash Algorithm 1

SIP Session Initiation Protocol

TCP Transmission Control Protocol

TID Thread ID

UDP User Datagram Protocol

UPX Ultimate Packer for eXecutables

URL Uniform Resource Locator

UTC Coordinated Universal Time

VAD Virtual Address Descriptor

VMEM Virtual Memory

WPF Windows Presentation Foundation

DRDC Valcartier TM 2013-155 99

Glossary

_Eprocess

See Eprocess.

Anti-Virus

An Anti-virus, AV, or AV scanner is a software system or framework which is used to, at a
minimum, scan a given system for signs of malware infection. This software may be more
than just a scanner; it may also include system-protection and anti-malware detection and
prevention capability.

AV Scanner

See Anti-Virus.

Computer Memory Image

See Memory Image.

Context Triggered Piecewise Hash

See Fuzzy Hash.

Data Carving

Commonly known as file carving, data carving is the process or act of recovering known data
structures, generally based on recognized file patterns. Data carving only works on
contiguous data structures as the recovery of fragmented data is not supported by most of
today’s data recovery software and those that do support a very limited number of file
formats.

Eprocess

The Eprocess is a kernel-based process-specific data structure that encompasses a process’
state-based information. This structure has a forward and backward pointer to active
processes.

Ext4

Ext4 is the latest Ext-based filesystem of the Linux operating system and supersedes Ext2/3.
It provides filesystem journaling and greater performance, reliability and allows for much
larger file and filesystem sizes. This filesystem is natively supported by Linux.

Fuzzy Hash

This is a specific type of file hashing which has the ability to identify file similarities, usually
represented as a percentage. It is based on Context Triggered Piecewise Hashing, first
proposed by Dr. Andrew Tridgell.

100 DRDC Valcartier TM 2013-155

Handle

A handle is a pointer-like resource-based reference used to a specific system resource.
Handles are abstract references to resources available within a given computer system.
Under Windows, many types of handles exist but common examples pertain to files,
directories, the registry and system based devices. It should not be confused with file
handles.

Hash

A hash, commonly referred to as a file hash, is a reduced representation of some arbitrary
data produced by passing it through some cryptographic hashing algorithm. In so doing, a
unique hash value is generated by the hashing program and it can be used to identify and
authenticate a given file’s integrity and uniqueness against a set of hashes, commonly known
as a hash-set. SHA1 and CTPH hashes are examples of hashing algorithms.

Memory Image

A memory image or computer memory image is a bit-copy of a computer system’s RAM and
is acquired using a memory-imaging program. In virtualized environments, memory can be
acquired by an imaging program or by saving or dumping the virtual machine’s memory
state.

Mutex

A mutex is a Windows-based object used to provide exclusive access to a shared system
resource. These resources can only be accessed one at a time, thus by issuing a mutex or
mutual exclusion, a process or thread can be allocated said resource when it becomes
available for use.

SHA1

The SHA1 hash is a 160-bit cryptographic hash commonly used for forensic file
identification and authentication.

Strings Command

The strings command is a UNIX-based command used to extract 7, 8, 16 and 32-bit text
patterns from arbitrary data files that are text or binary based. 7-bit extraction represents the
first 128 ASCII characters while 8-bit extraction represents the extended ASCII character set.
16 and 32-bit strings are typically reserved for Unicode-based text. Thus, the command line
parameters required to instruct the strings command to perform 7, 8, 16 or 32-bit text
extraction are -s, -S, -l and -L, respectively.

Thread

A thread is typically a subset process. A thread contains only the code necessary to perform a
set of instructions. In single-threaded programs, a thread represents the program’s executable
code and stack while in multi-threaded applications a thread performs just one piece of the
work that is distributed across multiple threads. These threads then typically communicate
with each other through various inter-process mechanisms.

DRDC Valcartier TM 2013-155 101

Trojan horse

A Trojan horse is a malicious non-replicating infectious computer program. It infects a
computer when the delivery software is run at which time a payload is instantiated that does
the actual infecting. However, Trojan’s do not typically infect computers the way viruses do.
As such, they do not generally infect computer files. The program delivering the payload is
known as a dropper. The payload achieves its objective by gaining some form of
administrative level privileges in the target’s operating system, typically through subversion.
A Trojan’s typical objective is to provide backdoor access but it can also be used for other
capabilities including data and information theft, arbitrary or specific data file encryption and
it can inflict damage to the operating system or its data files. In rare cases, it can even
attempt to damage a system’s hardware components.

UPX

UPX is an open source data compression algorithm used to compress executable files. UPX
executable file packers exist for Windows, Linux, Mac OS X and other platforms.

Vmem

A Vmem file is a VMware virtual machine-based paged memory file. It is generated when a
virtual machine’s state is saved and contains the entire RAM allocated to that virtual
machine.

Worm

Sometimes known as a computer or network worm, a worm is a malicious program designed
to spread to as many computer systems as possible, usually by means of a network. Worms
do not typically cause much, if any, damage to the underlying computer system. Instead, due
to their need to replicate they often consume not only a network’s available bandwidth but
crash underlying computer systems as they sometimes overwhelm a system’s resources as it
attempts to propagate. Worms typically spread only to systems susceptible to the
vulnerabilities necessary for their infection to take hold. Thus, unaffected systems do not
become infected.

102 DRDC Valcartier TM 2013-155

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

 2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

Malware memory analysis for non-specialists : Investigating publicly available memory images for
Prolaco and SpyEye

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, R.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

October 2013

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

120

 6b. NO. OF REFS
(Total cited in document.)

23
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 31XF20 « MOU RCMP "Live Forensics" »

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2013-155

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

This technical memorandum examines how an investigator can analyse an infected Windows
memory dump. The author investigates how to carry out such an analysis using Volatility and
other investigative tools, including data carving utilities and anti-virus scanners. Volatility is a
popular and evolving open source-based memory analysis framework upon which the author has
proposed a memory-specific methodology for aiding fellow novice memory analysts. The
author examines how Volatility can be used to find evidence and indicators of infection. This
technical memorandum is the second in a series concerning Windows malware-based memory
analysis. This current work examines two memory images infected with Prolaco and SpyEye,
respectively.

Ce mémorandum technique examine comment un investigateur peut analyser une image
mémoire d’une machine Windows infectée. L’auteur investigue les techniques d’analyse
utilisant Volatility et d’autres outils tels que les utilitaires de récupération de données et les
scanneurs anti-virus. Volatility est un cadre populaire d’analyse de mémoire en source libre sur
lequel l’auteur s’appuie pour proposer une méthodologie spécifique à la mémoire pour aider ses
collègues analystes novices. L’auteur examine comment Volatility peut être utilisé pour trouver
des preuves et des indicateurs d’infection. Ce mémorandum technique est le deuxième d’une
série visant la découverte de maliciel par le biais d’une analyse de la mémoire. Le présent
travail examine deux images mémoires infectées, respectivement, par Prolaco et SpyEye.

 14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Antivirus; Anti-virus; Computer forensics; Digital forensics; Digital forensic investigations;
Forensics; Malware; Memory analysis; Memory image; Prolaco; Rootkit; Scanners; SpyEye;
Trojan horse; Virus scanner; Volatility; Windows; Worm

